Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Computational Modeling of Diesel Spray Combustion with Multiple Injections

2020-04-14
2020-01-1155
Multiple injection strategies are commonly used in conventional Diesel engines due to the flexibility for optimizing heat-release timing with a consequent improvement in fuel economy and engine-out emissions. This is also desirable in low-temperature combustion (LTC) engines since it offers the potential to reduce unburned hydrocarbon and CO emissions. To better utilize these benefits and find optimal calibrations of split injection strategies, it is imperative that the fundamental processes of multiple injection combustion are understood and computational fluid dynamics models accurately describe the flow dynamics and combustion characteristics between different injection events. To this end, this work is dedicated to the identification of suitable methodologies to predict the multiple injection combustion process.
Technical Paper

The Impact of Operating Conditions on Post-Injection Efficacy; a Study Using Design-of-Experiments

2018-04-03
2018-01-0229
Post-injection strategies prove to be a valuable option for reducing soot emission, but experimental results often differ from publication to publication. These discrepancies are likely caused by the selected operating conditions and engine hardware in separate studies. Efforts to optimize not only engine-out soot, but simultaneously fuel economy and emissions of nitrogen oxides (NOx) complicate the understanding of post-injection effects even more. Still, the large amount of published work on the topic is gradually forming a consensus. In the current work, a Design-of-Experiments (DoE) procedure and regression analysis are used to investigate the influence of various operating conditions on post-injection scheduling and efficacy. The study targets emission reductions of soot and NOx, as well as fuel economy improvements. Experiments are conducted on a heavy-duty compression ignition engine at three load-speed combinations.
Journal Article

Lignin Derivatives as Potential Octane Boosters

2015-04-14
2015-01-0963
Owing to environmental and health concerns, tetraethyl lead was gradually phased out from the early 1970's to mid-1990's in most developed countries. Advances in refining, leading to more aromatics (via reformate) and iso-paraffins such as iso-octane, along with the introduction of (bio) oxygenates such as MTBE, ETBE and ethanol, facilitated the removal of lead without sacrificing RON and MON. In recent years, however, legislation has been moving in the direction of curbing aromatic and olefin content in gasoline, owing to similar concerns as was the case for lead. Meanwhile, concerns over global warming and energy security have motivated research into renewable fuels. Amongst which are those derived from biomass. The feedstock of interest in this study is lignin, which, together with hemicellulose and cellulose, is amongst the most abundant organic compounds on the planet.
Journal Article

Commercial Naphtha Blends for Partially Premixed Combustion

2013-04-08
2013-01-1681
Partially Premixed Combustion has shown the potential of low emissions of nitrogen oxides (NOx) and soot with a simultaneous improvement in fuel efficiency. Several research groups have shown that a load range from idle to full load is possible, when using low-octane-number refinery streams, in the gasoline boiling range. As such refinery streams are not expected to be commercially available on the short term, the use of naphtha blends that are commercially available could provide a practical solution. The three blends used in this investigation have been tested in a single-cylinder engine for their emission and efficiency performance. Besides a presentation of the sensitivity to injection strategies, dilution levels and fuel pressure, emission performance is compared to legislated emission levels. Conventional diesel combustion benchmarks are used for reference to show possible improvements in indicated efficiency.
Journal Article

Direct Injection of Diesel-Butane Blends in a Heavy Duty Engine

2011-12-06
2011-01-2400
Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles. These (port fuel) systems either vaporize the liquid fuel and then mix it with intake air, or inject fuel into the engine's intake ports. While this concept offers significant fuel cost reductions, for aftermarket certification and large-scale OEM use some concerns are present. Unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions are known to be high because of premixed charge getting trapped into crevices and possibly being blown through during valve-overlap. Apart from the higher emission levels, this also limits fuel efficiency and therefore cost savings.
Technical Paper

On-Board Plasma Assisted Fuel Reforming

2011-09-11
2011-24-0088
It is well known that the addition of gaseous fuels to the intake manifold of diesel engines can have significant benefits in terms of both reducing emissions of hazardous gases and soot and improving fuel economy. Particularly, the addition of LPG has been investigated in numerous studies. Drawbacks, however, of such dual fuel strategies can be found in storage complexity and end-user inconvenience. It is for this reason that on-board refining of a single fuel (for example, diesel) could be an interesting alternative. A second-generation fuel reformer has been engineered and successfully tested. The reformer can work with both gaseous and liquid fuels and by means of partial oxidation of a rich fuel-air mix, converts these into syngas: a mixture of H₂ and CO. The process occurs as partial oxidation takes place in an adiabatic ceramic reaction chamber. High efficiency is ensured by the high temperature inside the chamber due to heat release.
Journal Article

Waste Energy Driven Air Conditioning System (WEDACS)

2009-09-13
2009-24-0063
In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs stoichiometrically in this type of engine. In WEDACS (Waste Energy Driven Air Conditioning System), a technology patented by the Eindhoven University of Technology, the throttle valve is replaced by a turbine-generator combination. The turbine is used to control engine power. Throttling losses are recovered by the turbine and converted to electrical energy. Additionally, when air expands in the turbine, its temperature decreases and it can be used to cool air conditioning fluid. As a result, load of the alternator and air conditioning compressor on the engine is decreased or even eliminated, which increases overall engine efficiency.
Journal Article

Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN)

2009-09-13
2009-24-0028
One of the challenges with conventional diesel engines is the emission of soot. To reduce soot emission whilst maintaining fuel efficiency, an important pathway is to improve the fuel-air mixing process. This can be achieved by creating small droplets in order to enhance evaporation. Furthermore, the distribution of the droplets in the combustion chamber should be optimized, making optimal use of in-cylinder air. To deal with these requirements a new type of injector is proposed, which has a porous nozzle tip with pore diameters between 1 and 50 μm. First, because of the small pore diameters the droplets will also be small. From literature it is known that (almost) no soot is formed when orifice diameters are smaller than 50 μm. Second, the configuration of the nozzle can be chosen such that the whole cylinder can be filled with fine droplets (i.e., spray angle nearly 180°).
X