Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Study on the Design of a Passive Pre-Chamber for a Heavy-Duty Hydrogen Combustion Engine

2024-04-09
2024-01-2112
Lean-burn hydrogen internal combustion engines are a good option for future transportation solutions since they do not emit carbon-dioxide and unburned hydro-carbons, and the emissions of nitric-oxides (NOx) can be kept low. However, under lean-burn conditions the combustion duration increases, and the combustion stability decreases, leading to a reduced thermal efficiency. Turbulent jet ignition (TJI) can be used to extend the lean-burn limit, while decreasing the combustion duration and improving combustion stability. The objective of this paper is to investigate the feasibility of a passive pre-chamber TJI system on a heavy-duty hydrogen engine under lean-burn conditions using CFD modelling. The studied concept is mono-fuel, port-fuel injected, and spark ignited in the pre-chamber. The overall design of the pre-chamber is discussed and the effect of design parameters on the engine performance are studied.
Technical Paper

Control Oriented Engine Model Development for Model-Based PPC Control

2022-03-29
2022-01-0480
A model-based control approach is proposed to give proper reference for the feed-forward combustion control of Partially Pre-mixed Combustion (PPC) engines. The current study presents a simplified first principal model, which has been developed to provide a base estimation of the ignition properties. This model is used to describe the behavior of a single-cylinder heavy-duty diesel engine fueled with a mix of bio-butanol and n-heptane (80vol% bio-butanol and 20 vol% n-heptane). The model has been validated at 8 bar gross Indicated Mean Effective Pressure (gIMEP) in PPC mode. Inlet temperature and pressure have been varied to test the model capabilities. First the experiments were conducted to generate reference points with BH80 under PPC conditions. And then CFD simulations were conducted to give initial parameter set up, e.g. fuel distribution, zone dividing, for the multi-zone model.
Technical Paper

CO2 Neutral Heavy-Duty Engine Concept with RCCI Combustion Using Seaweed-based Fuels

2020-04-14
2020-01-0808
This paper focusses on the application of bioalcohols (ethanol and butanol) derived from seaweed in Heavy-Duty (HD) Compression Ignition (CI) combustion engines. Seaweed-based fuels do not claim land and are not in competition with the food chain. Currently, the application of high octane bioalcohols is limited to Spark Ignition (SI) engines. The Reactivity Controlled Compression Ignition (RCCI) combustion concept allows the use of these low carbon fuels in CI engines which have higher efficiencies associated with them than SI engines. This contributes to the reduction of tailpipe CO2 emissions as required by (future) legislation and reducing fuel consumption, i.e. Total-Cost-of-Ownership (TCO). Furthermore, it opens the HD transport market for these low carbon bioalcohol fuels from a novel sustainable biomass source. In this paper, both the production of seaweed-based fuels and the application of these fuels in CI engines is discussed.
Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

2020-04-14
2020-01-0831
Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Technical Paper

Optimal Aftertreatment Pre-Heat Strategy for Minimum Tailpipe NOx Around Green Zones

2020-04-14
2020-01-0361
Green zones are challenging problems for the thermal management systems of hybrid vehicles. This is because within the green zone the engine is turned off, and the only way to keep the aftertreatment system warm is lost. This means that there is a risk of leaving the green zone with a cold and ineffective aftertreatment system, resulting in high emissions. A thermal management strategy that heats the aftertreatment system prior to turning off the engine, in an optimal way, to reduce the NOx emissions when the engine is restarted, is developed. The strategy is also used to evaluate under what conditions pre-heating is a suitable strategy, by evaluating the performance in simulations using a model of a heavy-duty diesel powertrain and scenario designed for this purpose.
Technical Paper

Effects of Butanol Isomers on the Combustion and Emission Characteristics of a Heavy-Duty Engine in RCCI Mode

2020-04-14
2020-01-0307
Butanol is an attractive alternative fuel by virtue of its renewable source and low sooting tendency. In this paper, three butanol isomers (n-butanol, isobutanol, and tert-butanol) were induced via port injection respectively and n-heptane was directly injected into the cylinder to investigate reactivity controlled compression ignition in a heavy-duty diesel engine. This work evaluates the potential of applying butanol as low reactivity fuel and the effects of reactivity gradient on combustion and emission characteristics. The experiments were performed from low load to medium-high load. Due to the different reactivities among the butanol isomers, the exhaust gas recirculation rate and the direct injection strategy were varied for a specific butanol isomer and testing load. Particularly, isobutanol/n-heptane can be operated with single direct injection and no exhaust gas recirculation up to medium load due to the high octane rating.
Journal Article

Computational Modeling of Diesel Spray Combustion with Multiple Injections

2020-04-14
2020-01-1155
Multiple injection strategies are commonly used in conventional Diesel engines due to the flexibility for optimizing heat-release timing with a consequent improvement in fuel economy and engine-out emissions. This is also desirable in low-temperature combustion (LTC) engines since it offers the potential to reduce unburned hydrocarbon and CO emissions. To better utilize these benefits and find optimal calibrations of split injection strategies, it is imperative that the fundamental processes of multiple injection combustion are understood and computational fluid dynamics models accurately describe the flow dynamics and combustion characteristics between different injection events. To this end, this work is dedicated to the identification of suitable methodologies to predict the multiple injection combustion process.
Journal Article

Ramped Versus Square Injection Rate Experiments in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0300
CO2 regulations on heavy-duty transport are introduced in essentially all markets within the next decade, in most cases in several phases of increasing stringency. To cope with these mandates, developers of engines and related equipment are aiming to break new ground in the fields of combustion, fuel and hardware technologies. In this work, a novel diesel fuel injector, Delphi’s DFI7, is utilized to experimentally investigate and compare the performance of ramped injection rates versus traditional square fueling profiles. The aim is specifically to shift the efficiency and NOx tradeoff to a more favorable position. The design of experiments methodology is used in the tests, along with statistical techniques to analyze the data. Results show that ramped and square rates - after optimization of fueling parameters - produce comparable gross indicated efficiencies.
Technical Paper

Performance and Emission Studies in a Heavy-Duty Diesel Engine Fueled with an N-Butanol and N-Heptane Blend

2019-04-02
2019-01-0575
N-butanol, as a biomass-based renewable fuel, has many superior fuel properties. It has a higher energy content and cetane number than its alcohol competitors, methanol and ethanol. Previous studies have proved that n-butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency when blended with diesel. However, most studies on n-butanol are limited to low blending ratios, which restricts the improvement of emissions. In this paper, 80% by volume of n-butanol was blended with 20% by volume of n-heptane (namely BH80). The influences of various engine parameters (combustion phasing, EGR ratio, injection timing and intake pressure, respectively) on its combustion and emission characteristics are tested at different loads. The results showed that when BH80 uses more than 40% EGR, the emitted soot and nitrogen oxides (NOx) emissions are below the EURO VI legislation.
Technical Paper

Investigation of Late Stage Conventional Diesel Combustion - Effect of Additives

2018-09-10
2018-01-1787
The accepted model of conventional diesel combustion [1] assumes a rich premixed flame slightly downstream of the maximum liquid penetration. The soot generated by this rich premixed flame is burnt out by a subsequent diffusion flame at the head of the jet. Even in situations in which the centre of combustion (CA50) is phased optimally to maximize efficiency, slow late stage combustion can still have a significant detrimental impact on thermal efficiency. Data is presented on potential late-stage combustion improvers in a EURO VI compliant HD engine at a range of speed and load points. The operating conditions (e.g. injection timings, EGR levels) were based on a EURO VI calibration which targets 3 g/kWh of engine-out NOx. Rates of heat release were determined from the pressure sensor data. To investigate late stage combustion, focus was made on the position in the cycle at which 90% of the fuel had combusted (CA90). An EN590 compliant fuel was tested.
Technical Paper

Effects of Different Injection Strategies and EGR on Partially Premixed Combustion

2018-09-10
2018-01-1798
Premixed Charge Compression Ignition concepts are promising to reduce NOx and soot simultaneously and keeping a high thermal efficiency. Partially premixed combustion is a single fuel variant of this new combustion concepts applying a fuel with a low cetane number to achieve the necessary long ignition delay. In this study, multiple injection strategies are studied in the partially premixed combustion approach to reach stable combustion and ultra-low NOx and soot emission at 15.5 bar gross indicated mean effective pressure. Three different injection strategies (single injection, pilot-main injection, main-post injection) are experimentally investigated on a heavy duty compression ignition engine. A fuel blend (70 vol% n-butanol and 30 vol% n-heptane) was tested. The effects of different pilot and post-injection timing, as well as Exhaust-gas Recirculation rate on different injection strategies investigated.
Technical Paper

Heavy-Duty Diesel Engine Spray Combustion Processes: Experiments and Numerical Simulations

2018-09-10
2018-01-1689
A contemporary approach for improving and developing the understanding of heavy-duty Diesel engine combustion processes is to use a concerted effort between experiments at well-characterized boundary conditions and detailed, high-fidelity models. In this paper, combustion processes of n-dodecane fuel sprays under heavy-duty Diesel engine conditions are investigated using this approach. Reacting fuel sprays are studied in a constant-volume pre-burn vessel at an ambient temperature of 900 K with three reference cases having specific combinations of injection pressure, ambient density and ambient oxygen concentration (80, 150 & 160 MPa - 22.8 & 40 kg/m3-15 & 20.5% O2). In addition to a free jet, two different walls were placed inside the combustion vessel to study flame-wall interaction.
Technical Paper

The Impact of Operating Conditions on Post-Injection Efficacy; a Study Using Design-of-Experiments

2018-04-03
2018-01-0229
Post-injection strategies prove to be a valuable option for reducing soot emission, but experimental results often differ from publication to publication. These discrepancies are likely caused by the selected operating conditions and engine hardware in separate studies. Efforts to optimize not only engine-out soot, but simultaneously fuel economy and emissions of nitrogen oxides (NOx) complicate the understanding of post-injection effects even more. Still, the large amount of published work on the topic is gradually forming a consensus. In the current work, a Design-of-Experiments (DoE) procedure and regression analysis are used to investigate the influence of various operating conditions on post-injection scheduling and efficacy. The study targets emission reductions of soot and NOx, as well as fuel economy improvements. Experiments are conducted on a heavy-duty compression ignition engine at three load-speed combinations.
Technical Paper

Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

2017-10-08
2017-01-2403
In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
Technical Paper

Spray Combustion Analysis of Humins

2017-09-04
2017-24-0119
Second generation biomass is an attractive renewable feedstock for transport fuels. Its sulfur content is generally negligible and the carbon cycle is reduced from millions to tens of years. One hitherto non-valorized feedstock are so-called humins, a residual product formed in the conversion of sugars to platform chemicals, such as hydroxymethylfurfural and methoxymethylfurfural, intermediates in the production of FDCA, a building block used to produce the polyethylene furanoate (PEF) bottle by Avantium. The focus of this study is to investigate the spray combustion behavior of humins as a renewable alternative for heavy fuel oil (HFO) under large two-stroke engine-like conditions in an optically accessible constant volume chamber.
Technical Paper

An Insight on the Spray-A Combustion Characteristics by Means of RANS and LES Simulations Using Flamelet-Based Combustion Models

2017-03-28
2017-01-0577
Advanced Computational Fluid Dynamics (CFD) modeling of reacting sprays provides access to information not available even applying the most advanced experimental techniques. This is particularly evident if the combustion model handles detailed chemical kinetic models efficiently to describe the fuel auto-ignition and oxidation processes. Complex chemistry also provides the temporal evolution of key species closely related to emissions formation, such as polycyclic aromatic hydrocarbons (PAHs) that are well-known as soot precursors. In this framework, present investigation focuses on the analysis of the so-called Spray-A combustion characteristics using two different flamelet-based combustion models. Both Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) predictions are combined to study not only the averaged spray characteristics, but also the relevance of different realizations in this particular problem.
Technical Paper

Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion

2017-03-28
2017-01-0750
The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30 °C. Possibly increasing intake air temperatures could extend the load range. In this study primary reference fuels (PRFs), blends of iso-octane and n-heptane, with octane numbers of 70, 80, and 90 are tested in an adapted commercial diesel engine under partially premixed combustion mode to investigate the potential of these higher octane number fuels in low load and idle conditions. During testing combustion phasing and intake air temperature are varied to investigate the combustion and emission characteristics under low load and idle conditions.
Technical Paper

Numerical Investigation of PPCI Combustion at Low and High Charge Stratification Levels

2017-03-28
2017-01-0739
Partially premixed compression ignition combustion is one of the low temperature combustion techniques which is being actively investigated. This approach provides a significant reduction of both soot and NOx emissions. Comparing to the homogeneous charge compression ignition mode, PPCI combustion provides better control on ignition timing and noise reduction through air-fuel mixture stratification which lowers heat release rate compared to other advanced combustion modes. In this work, CFD simulations were conducted for a low and a high air-fuel mixture stratification cases on a light-duty optical engine operating in PPCI mode. Such conditions for PRF70 as fuel were experimentally achieved by injection timing and spray targeting at similar thermodynamic conditions.
Technical Paper

Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

2017-03-28
2017-01-0726
Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol.
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

2016-04-05
2016-01-0861
The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
X