Refine Your Search

Topic

Search Results

Technical Paper

C919 Trailing Edge Assembly Interchangeable Tooling

2019-09-16
2019-01-1880
Traditional Trailing Edge (TE) assembly that utilise fixtures for accurate positioning of aircraft (a/c) parts do not allow for removal of specific tooling from the fixtures to travel with the TE, post assembly. Instead, the tooling that positions all the primary a/c assembly datums generally utilise precision pins of various sizes that index and clamp the a/c ribs. Often it is difficult to remove the pins post assembly before the spar can be taken out of the fixture. Use of hammers is common place to hit pins out of holes which is less than ideal considering the a/c parts can be fragile and the tooling is precision set. Also, the Main Assembly Fixture (MAJ) that will receive the TE will inevitably need to relocate some if not all the primary a/c ribs and therefore will most likely be subject to some amount of persuasion.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Technical Paper

Automatic Drilling and Fastening System for Large Aircraft Doors

2019-03-19
2019-01-1346
Electroimpact has developed a system for drilling and fastening of cargo door structures which efficiently addresses many of the manufacturing challenges that such parts present. Challenges to door automation include 1) the presence of an inner skin that must be processed, in addition to the outer skin, and 2) a stiff frame structure, which makes the clamping and drilling processes that are typical to automated fastening machines very unforgiving of any errors in workpiece positioning. In this case, the manufacturing cell was to be installed in an existing facility with very limited ceiling height, further complicating the system and process design. New methods were devised to solve these problems, and the solutions found will likely have utility in future applications.
Journal Article

Collaborative Robotic Fastening Using Stereo Machine Vision

2019-03-19
2019-01-1374
With typically over 2.3 million parts, attached with over 3 million fasteners, it may be surprising to learn that approximately two out of every three fasteners on a twin aisle aircraft are fastened by hand. In addition the fasteners are often installed in locations designed for strength and not necessarily ergonomics. These facts lead to vast opportunities to automate this tedious and repetitive task. The solution outlined in this paper utilizes the latest machine vision and robotics techniques to solve these unique challenges. Stereo machine vision techniques find the fastener on the interior of an aerospace structure and calculate the 6DOF (Degrees of Freedom) location in less than 500ms. Once the fastener is located, sealed, and inspected for bead width and gaps, a nut or collar is then installed. Force feedback capabilities of a collaborative robot are used to prevent part damage and ensure the nut or collar are properly located on the fastener.
Technical Paper

Automated Riveting of C-130J Aft Fuselage Panels

2017-09-19
2017-01-2075
Electroimpact and Lockheed Martin have developed an automated drilling and fastening system for C-130J aft fuselage panels. Numerous design and manufacturing challenges were addressed to incorporate the system into Lockheed Martin’s existing manufacturing paradigm and to adapt Electroimpact’s existing line of riveting machines for manufacture of these legacy aircraft parts. Challenges to automation included design of a very long yet sufficiently rigid and lightweight offset riveting anvil for fastening around deep circumferential frames, automated feeding of very short, “square” rivets in which the length is similar to the head diameter, creation of part programs and simulation models for legacy parts with no existing 3d manufacturing data, and crash protection for the aircraft part from machine collisions, given the uncertainties inherent in the model and the unique geometry of the aircraft parts.
Technical Paper

Fully Automated Off-Line Cartridge Filling Station

2017-09-19
2017-01-2100
A fully automated off-line cartridge filling station has been commissioned to support the new Boeing SAL production cell. The filing station uses automated fastener feed technology that is typically found on the machines themselves. Incorporating this technology off-line in place of the traditional manual handling processes extends the benefits of automation beyond the main manufacturing cell. A single operator is able to keep up with the demand of eight production fastening machines while maintaining the highest levels of accuracy and quality. Additional benefits to this application of automation include reduction of the operators exposure to risks associated with manual handling and repetitive tasks.
Technical Paper

Lights Out Cell Automatic Tool Change Solution for Nut and Collar Anvils with Integrated Fastener Feed Hardware

2017-09-19
2017-01-2097
Automated collar and nut installation requires complex hardware on the wet side of the spar or wing panel. Wet side automatic tool changers are becoming common but an operator is often required to connect electrical, pneumatic and fastener feed system components. This is unacceptable in a lights-out cell, and any fully automatic solution must be reliable while satisfying demanding design requirements. Figure 1 Wet side anvil for nut installation. The 737 Spar Assembly Line (SAL) is a new lights-out machine cell at the Boeing factory in Renton, Washington. The SAL machines are equipped with a unique fully automatic tool changer (ATC). The wet side ATC interface is designed to automatically connect conventional as well as more unique services such as fastener feed. The fastener feed ATC module, called the “spinner,” rotates with the machine’s wet side rotary axis (C axis). It consists of a stack of rotors that rotate inside of a stationary annulus.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

AFP Automated Inspection System Performance and Expectations

2017-09-19
2017-01-2150
In AFP manufacturing systems, manually inspection of parts consumes a large portion of total production time and is susceptible to missing defects. The aerospace industry is responding to this inefficiency by focusing on the development of automated inspection systems. The first generation of automated inspection systems is now entering production. This paper reviews the performance of the first generation system and discusses reasonable expectations. Estimates of automated inspection time will be made, and it will be shown that the automated solution enables a detailed statistical analysis of manufactured part quality and provides the data necessary for statistical process control. Data collection allows for a reduction in rework because not all errors need to be corrected. Expectations will be set for the accuracy for both ply boundary and overlap/gap measurements. The time and resource cost of development and integration will also be discussed.
Technical Paper

Magnetic Safety Base for Automated Riveting and Bolting

2016-09-27
2016-01-2087
There is an ever-present risk for the lower ram on a riveting machine to suffer a damaging collision with aircraft parts during automated fastening processes. The risk intensifies when part frame geometry is complex and fastener locations are close to part features. The lower anvil must be led through an obstructive environment, and there is need for crash protection during side-to-side and lowering motion. An additional requirement is stripping bolt collars using the downward motion of the lower ram, which can require as much as 2500 pounds of pulling force. The retention force on the lower anvil would therefore need to be in excess of 2500 pounds. To accomplish this a CNC controlled electromagnetic interface was developed, capable of pulling with 0-3400 pounds. This electromagnetic safety base releases when impact occurs from the sides or during downward motion (5 sided crash protection), and it retains all riveting and bolting functionality.
Technical Paper

High Speed Fastener Inspection

2016-09-27
2016-01-2145
Inspection of fasteners prior to installation is critical to the quality of aerospace parts. Fasteners must be inspected for length/grip and diameter at a minimum. Inspecting the fasteners mechanically just prior to insertion can cause additional cycle time loss if inspection cannot be performed at the same time as other operations. To decrease fastener inspection times and to ensure fastener cartridges contain the expected fastener a system was devised to measure the fastener as it travels down the fastener feed tube. This process could be adapted to inspection of fasteners being fed to the process head of a running machine eliminating the mechanical inspection requirement and thus decreasing cycle time.
Journal Article

Plate Cartridge Compact Flexible Automatic Feed System

2016-09-27
2016-01-2080
The newest generation of automated fastening machines require a feed system that is smaller, more flexible, and faster than any currently available. The feed system must be compact enough to fit on a robot base, yet have a capacity large enough to support unmanned production for hours. A large variety of fasteners must be supported and the entire system must be reloaded or reconfigured in minutes to match the next work piece being assembled by the machine. When requested by the part program, the correct fastener must be released directly and immediately into the feed tube to minimize cycle time. This paper describes a new “plate cartridge” feed system developed to meet these needs.
Journal Article

Automatic Temporary Fastener Installation System for Wingbox Assembly

2016-09-27
2016-01-2085
The automation cycle time of wing assembly can be shortened by the automated installation of single-sided temporary fasteners to provide temporary part clamping and doweling during panel drilling. Feeding these fasteners poses problems due to their complexity in design and overall heavy weight. In the past, Electroimpact has remotely fed these fasteners by blowing them through pneumatic tubing. This technique has resulted in occasional damage to fasteners during delivery and a complex feed system that requires frequent maintenance. Due to these issues, Electroimpact has developed a new fully automated single-sided temporary fastening system for installation of the LISI Clampberry fasteners in wing panels for the C919 wing factory in Yanliang, China. The feed system stores fasteners in gravity-fed cartridges on the end effector near the point of installation.
Journal Article

Integrated Ball-Screw Based Upset Process for Index Head Rivets Used in Wing Panel Assembly

2015-09-15
2015-01-2491
A new high speed forming process for fatigue rated index head rivets used in wing panel assembly using ball-screw based servo squeeze actuation has been developed. The new process is achieved using a combination of force and position control and is capable of forming to 40,000 lbs at rates of up to 200,000 lbs/second whilst holding the part location to within +/− 10 thousandths of an inch. Multi-axis riveting machines often have positioning axes that are also used for fastener upset. It is often the case that while a CNC is used for positioning control, another secondary controller is used to perform the fastener upset. In the new process, it has been possible to combine the control of the upset process with the machine CNC, thus eliminating any separate controllers. The fastener upset force profile is controlled throughout the forming of the rivet by using a closed loop force control system that has a load cell mounted directly behind the stringer side forming tool.
Technical Paper

Use of Synchronized Parallel Grippers in Fastener Injection Systems

2015-09-15
2015-01-2515
A new style of rivet injector is in production use on a variety of fastening machines used by major aircraft manufacturers. In this injector the opposing sides of the rivet guide blocks are attached to the arms of a parallel gripper. We have implemented the parallel gripper in both vertical axis and horizontal axis riveting applications. It is equally effective in both orientations. We have implemented the parallel gripper rivet injector on headed rivets, threaded bolts, ribbed swage bolts and unheaded (slug) rivets.
Technical Paper

Robotic Drilling and Countersinking on Highly Curved Surfaces

2015-09-15
2015-01-2517
Electroimpact has developed a novel method for accurately drilling and countersinking holes on highly convex parts using an articulated arm robotic drilling system. Highly curved parts, such as the leading edge of an aircraft wing, present numerous challenges when attempting to drill normal to the part surface and produce tight tolerance countersinks. Electroipmact's Accurate Robot technology allows extremely accurate positioning of the tool point and the spindle vector orientation. However, due to the high local curvature of the part, even a small positional deviation of the tool point can result in a significantly different normal vector than expected from an NC program. An off-normal hole will result in an out of tolerance countersink and a non-flush fastener.
Technical Paper

Robotic Installation of OSI-Bolts

2015-09-15
2015-01-2512
Electroimpact has developed an automated solution for installing OSI-Bolts on the HStab for Boeing's 787-9 aircraft. This solution utilizes Electroimpact's existing accurate robotic system together with new hardware designed specifically for OSI-Bolts. In addition to automated drilling and fastener installation, this system performs numerous quality checks to insure the installed fastener meets engineering requirements. Before installing the fastener, the system measures actual stack thickness and the length of the fastener to ensure that the proper grip is installed. Torque and angle feedback are recorded during installation which can be used determine if the fastener was installed correctly. The system will also automatically shave the small protuberance on the fastener head left by the broken off fastener stem, which is inherent to the OSI-Bolt. Figure 1 Cell Overview
Technical Paper

An Automated Production Fastening System for LGP and Hi-Lok Titanium Bolts for the Boeing 737 Wing Panel Assembly Line

2015-09-15
2015-01-2514
A new automated production system for installation of Lightweight Groove Proportioned (LGP) and Hi-Lock bolts in wing panels has been implemented in the Boeing 737 wing manufacturing facility in Renton, Washington. The system inserts LGP and Hi-Lok bolts into interference holes using a ball screw mechanical squeeze process supported by a back side rod-locked pneumatic clamp cylinder. Collars are fed and loaded onto a swage die retaining pin, and swaging is performed through ball screw mechanical squeeze. Offset and straight collar tools allow the machine to access 99.9% of fasteners in 3/16″, ¼″ and 5/16″ diameters. Collar stripping forces are resolved using a dynamic ram inertial technique that reduces the pull on the work piece. Titanium TN nuts are fed and loaded into a socket with a retaining spring, and installed on Hi-Loks Hi-Lok with a Bosch right angle nut runner.
Technical Paper

3D Countersink Measurement

2015-09-15
2015-01-2510
Accurate measurement of countersinks in curved parts has always been a challenge. The countersink reference is defined relative to the panel surface which includes some degree of curvature. This curvature thus makes accurate measurements very difficult using both contact and 2D non-contact measurements. By utilizing structured light 3D vision technologies, the ability to very accurately measure a countersink to small tolerances can be achieved. By knowing the pose of the camera and projector, triangulation can be used to calculate the distance to thousands of points on the panel and countersink surface. The plane of the panel is then calculated using Random Sample Consensus (RANSAC) method from the dataset of points which can be adjusted to account for panel curvatures. The countersink is then found using a similar RANSAC method.
Technical Paper

Fully Automated Robotic Tool Change

2015-09-15
2015-01-2508
An improved aircraft assembly line incorporates fully automated robotic tool change. Ten machine tools, each with two onboard 6-axis robots, drill and fasten airplane structural components. The robots change 100% of the process tooling (drill bits, bolt anvils, hole probes, and nosepieces) to allow seamless transition across the entire range of hole and fastener sizes (3/16″-7/16″). To support required rate, total tool change time (including automatic calibration) is less than 80 seconds. This paper describes the robots and their end effector hardware, reliability testing, and simulations for both mechanical clearance and cycle time estimation.
X