Refine Your Search

Topic

Search Results

Technical Paper

PremAir® Catalyst System - OBD Concepts

2001-03-05
2001-01-1302
Traditional approaches to pollution control have been to develop benign, non-polluting processes or to abate emissions at the tailpipe or stack before release to the atmosphere. A new technology called PremAir® Catalyst Systems1 takes a different approach and directly reduces ambient, ground level ozone. For mobile applications, the new system involves coating a heat exchange device in a vehicle, such as the radiator or air conditioning condenser. The catalyst converts ozone to oxygen as ozone-containing ambient air passes over the coated surface of the radiator. The technology is relatively simple and provides a positive benefit to the environment while being totally passive to the end user application. Volvo Car Corporation was the first automobile manufacturer to voluntarily introduce the technology on their S80 luxury sedan. Nissan Motor Corporation is also using the technology on their new Sentra CA (Clean Air) certified PZEV vehicle for California.
Technical Paper

Study of Factors Influencing the Performance of a NOx Trap in a Light-Duty Diesel Vehicle

2000-10-16
2000-01-2911
A NOx trap catalyst was evaluated in a light-duty diesel engine bench under steady-state speed/load conditions with alternating lean and rich exhaust streams. The NOx conversion was correlated with several engine operating and control parameters, such as speed, lean / rich timing and catalyst temperature. The NOx conversion is a result of balance between stored NOx in a lean stream and the quantity of reductant applied in a rich transient pulse. The conversion is inversely proportional to the lean / rich ratio, R, (at R< 17) and engine speed. At a given speed and lean/rich ratio, the conversion is proportional to the catalyst inlet temperature. If the temperature is too high, thermal NOx release may decrease the overall NOx conversion. With a fully regenerated NOx trap catalyst, its cumulative NOx storage, at a given trapping period (or an instantaneous NOx trapping efficiency), is proportional to engine speed.
Technical Paper

An Assessment of the Plasma Assisted Catalytic Reactor (PACR) Approach to Lean NOx Abatement: The Relative Reducibility of NO and NO2 using #2 Diesel fuel as the Reductant

2000-10-16
2000-01-2962
The plasma assisted catalytic reactor (PACR) approach to lean NOx abatement is a two step process. The non-thermal plasma oxidizes the engine out NO to NO2, which is then reduced to N2 over a catalyst using a hydrocarbon reductant. Whereas it was once believed that the plasma itself directly reduces NOx to N2, it has been shown that the plasma's principle function is to oxidize NO to NO2. This is accomplished without oxidizing SO2 to SO3, resulting in lower sulfate particulate when compared to standard lean NOx catalysis using platinum or reducible oxide catalysts. We have performed reactor studies comparing the relative reducibility of NO2 and NO in a synthetic diesel exhaust using diesel fuel as the hydrocarbon reductant, with attention to time-on stream behavior and determination of NOx reversibly adsorbed on the catalyst. We find that at 200°C, 50% of the NO2 disappearance over Na-ZSM5 is attributable to reversible adsorption on the catalyst.
Technical Paper

PremAir® Catalyst System* - Long-term On-road Aging Results

2000-10-16
2000-01-2925
Recently Volvo Car Corporation introduced the new PremAir® catalyst system from Engelhard Corporation on their S80 luxury sedan and the new V70 estate wagon. In this paper, performance results of this catalyst system after long-term mileage accumulation will be presented. Urban taxi vehicles were used to test the catalyst over 110,000 miles. The rate of deactivation in long-term catalyst performance was found to be dependent on the radiator design, and was least for the radiator design with the highest total geometric surface area. Subsequently, a new catalyst version was developed in order to minimize the deactivation rate. This new catalyst has been evaluated under similar taxi driving conditions over 80,000 miles, and has shown improved durability performance.
Technical Paper

Understanding Sulfur Interaction Key to OBD of Low Emission Vehicles

2000-10-16
2000-01-2929
As the automobiles move closer to the ULEV, ULEV-2 and SULEV requirements, OBD (on board diagnostic) will become a design challenge. The present OBD II designs involve the use of dual oxygen sensors to monitor the hydrocarbon performance of the catalytic converter. The aim of this study was twofold: to determine the interaction of fuel sulfur and ceria in the catalyst formulation on the performance of a Pd/Rh TWC (three-way catalyst) to elucidate the sulfur and ceria interaction on the ability of the Pd/Rh catalyst to monitor the state of the catalyst relative to hydrocarbon activity and therefore it's utility in the OBD system. Catalyst samples were aged on a spark ignited engine using a “fuel cut” engine aging cycle operated for 50 hours. Maximum catalyst temperatures during this aging cycle were 850-870°C. The effect of sulfur was determined by measuring aged catalyst performance using both indolene (∼100 ppm sulfur) and premium unleaded gasoline (∼350 ppm sulfur).
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: A Fleet Start-Up Experience

2000-10-16
2000-01-2821
Previous studies have shown that regenerating particulate filters are very effective at reducing particulate matter emissions from diesel engines. Some particulate filters are passive devices that can be installed in place of the muffler on both new and older model diesel engines. These passive devices could potentially be used to retrofit large numbers of trucks and buses already in service, to substantially reduce particulate matter emissions. Catalyst-type particulate filters must be used with diesel fuels having low sulfur content to avoid poisoning the catalyst. A project has been launched to evaluate a truck fleet retrofitted with two types of passive particulate filter systems and operating on diesel fuel having ultra-low sulfur content. The objective of this project is to evaluate new particulate filter and fuel technology in service, using a fleet of twenty Class 8 grocery store trucks. This paper summarizes the truck fleet start-up experience.
Technical Paper

A New Approach to OBDII Monitoring of Catalyst Performance Using Dual Oxygen Sensors

2000-03-06
2000-01-0863
On-Board Diagnostics for emissions-related components require the monitoring of the catalytic converter performance. Currently, the dual Exhaust Gas Oxygen (EGO) sensor method is the only proven method for monitoring the catalyst performance for hydrocarbons (HC). The premise for using the dual oxygen sensor method is that a catalyst with good oxygen storage capacity (OSC) will perform better than a catalyst with lower OSC. A statistical relationship has been developed to correlate HC performance with changes in OSC. The current algorithms are susceptible to false illumination of the Malfunction Indication Light (MIL) due to: 1. The accuracy with which the diagnostic algorithm can predict a catalyst malfunction condition, and 2. The precision with which the algorithm can consistently predict a malfunction. A new algorithm has been developed that provides a significant improvement in correlation between the EGO sensor signals and hydrocarbon emissions.
Technical Paper

Metal Converter Technology Using Precoated Metal Foil

1996-10-01
962080
A novel process for coating and assembling metal converters utilizing precoated foil as building blocks has been developed which yields a converter capable of withstanding typical industry specified hot vibration protocols. The precoating process used here results in uniform catalyst coating distributions with coating adhesion to the foil on a par with the coatings' adhesion to ceramic substrates. FTP and MVEG vehicle emission performance of this unique precoated metal converter design versus a more conventional dip-coated metal monolith (parts with the same volume, cell density, and tri-metal catalyst coating), exhibited improved catalyst emission breakthrough efficiencies with respect to HC, CO, and NOx after two different engine-aging protocols. These advantages were observed on three different test vehicles across most phases of these driving cycles.
Technical Paper

SMART Catalyst Development Approach Applied to Automotive Diesel Application

1996-10-01
962048
Strategic Materials at Reaction Temperatures (SMART) is an approach used to design washcoat systems for passive 4-way emission control catalysts. Light duty diesel vehicles need to meet the European Motor Vehicle Emissions Group (MVEG) cycle or U. S. Federal test procedure (FTP 75). Emissions that are monitored include hydrocarbon (HC), nitrogen oxides (NOx), carbon monoxide (CO) and total particulate matter (TPM). Low engine-exhaust temperatures (< 200°C during city driving) and high temperatures (> 500-800°C under full load and wide-open throttle) make emission control a formidable task for the catalyst designer Gas phase HC, CO and NOx reactions must be balanced with the removal of the soluble organic fraction for the vehicle to be in compliance with regulations. The SMART approach uses model gases under typical operating conditions in the laboratory to better understand the function of individual washcoat components.
Technical Paper

NOx Abatement for Diesel Engines: Reductant Effects; Engine vs. Reactor Tests

1996-10-01
962043
Catalytic reduction of NOx from heavy duty diesel engines via addition of reductant to the exhaust is accompanied by a substantial exotherm in the catalyst bed which does not occur, for example, in a diesel oxidation catalyst. Engine tests show that thermal management in the aftertreatment system is required for optimum reductant use and maximum NOx conversion by the low-temperature (200-300°C) catalyst NSP-5, but of less importance with the high temperature (> 350°C) Catalyst A. Understanding thermal effects is also important for reconciling test results in the near-adiabatic environment of a full-sized catalyst on an engine with the near-isothermal one of a test piece in a laboratory reactor. The effects of reductant type and concentration on NOx conversion on NSP-5 were shown to result in part from non-steady state behavior of the catalyst during steady state engine operation.
Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

Methane Emissions Abatement from Lean Burn Natural Gas Vehicle Exhaust: Sulfur's Impact on Catalyst Performance

1996-10-01
961971
Because of their relatively low particulate make, lean burn natural gas vehicles (NGV's) are a viable approach to meeting the ULEV particulate standards in urban environments where NGV's are substituted for diesel powered buses and other fleet vehicles. Our experience with oxidation catalyst technology for natural gas vehicle emissions abatement has been consistent: that palladium based catalysts maintain excellent NMHC activity and particulate reduction, but methane activity, while initially very high, decreases within the first 50 hours of operation. This paper will show that sulfur oxides at sub-ppm concentrations diminish catalyst methane activity, and that inorganic ash components from the lubricating oil (P, Zn, Ca) do not significantly contribute to the initial catalyst deactivation. Using laboratory simulations, we explore systems approaches to increasing catalyst life.
Technical Paper

New Approach for Ambient Pollution Reduction - PremAir™ Catalyst Systems

1996-02-01
960800
Classical approaches to pollution control have been to develop benign non-polluting processes or to abate emissions at the tailpipe or stack before emitting to the atmosphere. A new technology called PremAir™ Catalyst Systems takes a different approach and reduces the existing ground level ozone. For the automotive application, the new systems involve placing a catalytic coating on a car's radiator and air conditioner condenser. As air which contains ozone passes over the radiator and condenser, the catalyst converts the ozone into oxygen. Tests conducted on a 1991 full size passenger vehicle showed that the PremAir™ Catalyst System could convert up to 90% of the ozone passing over the radiator during a driving cycle lasting 5840 kilometers (3650 miles). The effect of ozone concentration and flow rate were determined as well as the ozone destruction rate over the coated radiator. During the 5840 kilometers of driving, the catalyst exhibited steady ozone conversion.
Technical Paper

Catalytic Abatement of NOx from Diesel Engines:Development of Four Way Catalyst

1995-10-01
952491
The desire for improved fuel economy, and lower emissions of green house gases, such as CO2, is projected to increase the demand for diesel and lean-burn gasoline engines throughout the world. Several commercial diesel oxidation catalysts (DOCs) were developed in the last 3-4 years to reduce hydrocarbon, CO, and particulates emitted from the exhaust of diesel passenger cars and trucks. To meet future U.S. and European NOx standards, it is essential to develop catalyst technology that will allow NOx reduction in addition to the other three pollutants. Two materials that attracted great attention as lean NOx catalysts are the Cu/ZSM-5 and Pt based. Cu containing ZSM-5 are active for lean-NOx reduction at temperatures above 350°C, provided sufficient hydrocarbons are present as reductants.
Technical Paper

Close Coupled Catalyst System Design and ULEV Performance After 1050° C Aging

1995-10-01
952415
Close coupled catalysts represent a solution being pursued by automotive engineers to meet stringent LEV and ULEV emission standards. Close coupled systems provide fast light-off by utilizing the energy in the exhaust gas rather than energy supplied by an auxiliary source such as an electrically heated catalyst or a burner in the exhaust. Previous close coupled catalyst designs were limited by the temperature capability of the catalyst coatings. A successful close coupled catalyst technology has been developed 'that is resistant to higher temperature deactivation. This technology is able to function well at low temperature during the vehicle cold start when light-off is critical. The close coupled catalyst technology has approached ULEV emission levels after aging at 1050°C for 24 hours. This study will present experimental results for a close coupled catalyst including the selection of catalyst volume, cross sectional area and combination of catalyst technologies.
Technical Paper

Durability of Ceramic Catalytic Converters for Motorcycles

1995-09-01
951768
Motorcycle exhaust emission standards throughout the world are becoming more stringent. Emission control systems utilizing the catalytic converter are already in production in Taiwan for 2-stroke engine motorcycles. Catalysts designed for 2-stroke engines encounter a more severe exhaust environment than do those designed for 4-stroke engines. The two aspects of increased severity are the higher temperatures and higher stresses due to engine vibrations. Precious metal catalysts have been designed to operate in the thermal environment of 2-stroke engines and such catalysts have been successfully applied to both metal and ceramic substrates. However, until now, only the metal substrate catalysts have been utilized in motorcycle application. Ceramic based catalysts have not been considered because the mounting material that holds the catalyst substrate in place did not have enough durability to withstand the thermal/vibrational forces encountered in 2-stroke engine exhaust.
Technical Paper

Performance of Diesel Oxidation Catalysts for European Bus Applications

1995-02-01
950155
Base metal oxide diesel oxidation catalyst technology having low sulfate making tendencies was evaluated using the ECE R-49 Test procedure on medium and heavy duty diesel engines and found to achieve substantial reduction of particulate, gas phase HC and CO emissions. Although the engines met the current European standards, further reduction in these emissions for vehicles operated in congested urban areas, such as buses, would have a positive impact on general air quality. A study of varying fuel sulfur levels (110-770 ppm S) showed that the catalyst was effective for control of sulfate-make such that overall particulate removal in the test was not compromised. However, it was found that lower fuel sulfur levels (< 550 ppm S) gave the best results for the ECE R-49 test which places emphasis on test modes yielding the highest exhaust temperatures.
Technical Paper

Trimetallic Three-Way Catalysts

1995-02-01
950255
European car manufacturers have traditionally used Pt/Rh or Pd/Rh TWCs with PM loadings of 40-60 g/ft3. New regulations, however have stimulated interest in high Pd loadings (100 g/ft3 or more) in order to drastically reduce HC emissions. Pd is known to have good HC oxidation activity, high thermal stability and is relatively inexpensive. However, it suffers from excessive sensitivity to poisons and is usually associated with poor NOx conversion. A research program was initiated with the goal of capturing the benefits of high Pd concentrations while minimizing its disadvantages. It was found that trimetal formulations (Pt/Pd/Rh) could achieve high NOx conversions provided the loadings of the PMs were optimized based on a Box-Behnken design. Data showing the high thermal stability and low H2S emissions of these new “TriMax” catalysts will be presented. Their high performance has led to commercial acceptance by several European car manufacturers.
Technical Paper

High Temperature Ultra Stable Close-Coupled Catalysts

1995-02-01
950254
Close-coupled catalysts are being actively pursued by automotive engineers in order to meet stringent LEV/ULEV emission standards. However, future applications of close coupled catalyst will be exposed to 50 to 100°C higher operating temperatures with elimination of fuel enrichment to cool the catalyst. A successful close coupled catalyst technology must then be resistant to even higher temperature deactivation and yet continue to function at low temperature during the vehicle cold start. A close coupled catalyst technology is formulated through advanced catalyst design to meet LEV and ULEV emission standards after high temperature aging at 1050°C. This paper will show the inherent stability of the close coupled catalyst for both light-off temperature and steady state performance for aging temperatures up to 1100°C.
Technical Paper

Cold Start Hydrocarbon Emissions Control

1995-02-01
950410
The revisions in the United States Clean Air Act of 1990 and recent regulatory actions taken by the California Air Resources Board and European Economic Community require the development of automobiles with much lower tailpipe emissions. A significant portion of the total pollutants emitted to the atmosphere by motor vehicles occurs immediately following the startup of the engine when the engine block and exhaust manifold are cold, and the catalytic converter has not yet reached high conversion efficiencies. An effective, energy efficient strategy for dealing with cold start hydrocarbon using carbon-free hydrocarbon traps and heat exchange related TWC catalyst beds has been successfully tested on a wide variety of current model vehicles. In each case U.S. FTP 75 total hydrocarbon emissions were reduced between 45 - 75% versus the vehicle's stock exhaust system.
X