Refine Your Search

Topic

Search Results

Technical Paper

Heavy-Duty Diesel Combustion Optimization Using Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0716
A multi-objective genetic algorithm methodology was applied to a heavy-duty diesel engine at three different operating conditions of interest. Separate optimizations were performed over various fuel injection nozzle parameters, piston bowl geometries and swirl ratios (SR). Different beginning of injection (BOI) timings were considered in all optimizations. The objective of the optimizations was to find the best possible fuel economy, NOx, and soot emissions tradeoffs. The input parameter ranges were determined using design of experiment methodology. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. For the optimization of piston bowl geometry, an automated grid generator was used for efficient mesh generation with variable geometry parameters. The KIVA3V release 2 code with improved ERC sub-models was used. The characteristic time combustion (CTC) model was employed to improve computational efficiency.
Technical Paper

Investigation of Transient Emissions and Mixed Mode Combustion for a Light Duty Diesel Engine

2009-04-20
2009-01-1347
The use of low temperature combustion (LTC) modes has demonstrated abilities to lower diesel engine emissions while maintaining good fuel consumption. LTC is assumed to be a viable solution to assist in meeting stringent upcoming diesel engine emissions targets, particularly nitric oxides (NOx) and particulate matter (PM). However, LTC is currently limited to low engine loads and is not a feasible solution at higher loads on production engines. A mixed mode combustion strategy must be implemented to take advantage of the benefits offered from LTC at the low loads and speeds while switching to a conventional diesel combustion strategy at higher loads and speeds and thus allowing full range use of the engine under realistic driving conditions. Experiments were performed to characterize engine out emissions during transient engine operating conditions involving LTC combustion strategies.
Journal Article

Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0715
A multi-objective genetic algorithm coupled with the KIVA3V release 2 code was used to optimize the piston bowl geometry, spray targeting, and swirl ratio levels of a high speed direct injected (HSDI) diesel engine for passenger cars. Three modes, which represent full-, mid-, and low-loads, were optimized separately. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. High throughput computing was conducted using the CONDOR software. An automated grid generator was used for efficient mesh generation with variable geometry parameters, including open and reentrant bowl designs. A series of new spray models featuring reduced mesh dependency were also integrated into the code. A characteristic-time combustion (CTC) model was used for the initial optimization for time savings. Model validation was performed by comparison with experiments for the baseline engine at full-, mid-, and low-load operating conditions.
Technical Paper

Discussion of the Role of Fuel-Oil Diffusion in the Hydrocarbon Emissions from a Small Engine

2008-09-09
2008-32-0014
The contribution of fuel adsorption in engine oil and its subsequent desorption following combustion to the engine-out hydrocarbon (HC) emissions of a spark-ignited, air-cooled, V-twin utility engine was studied by comparing steady state and cycle-resolved HC emission measurements from operation with a standard full-blend gasoline, and with propane, which has a low solubility in oil. Experiments were performed at two speeds and three loads, and for different mean crankcase pressures. The crankcase pressure was found to impact the HC emissions, presumably through the ringpack mechanism, which was largely unaltered by the different fuels. The average and cycle-resolved HC emissions were found to be in good agreement, both qualitatively and quantitatively, for the two fuels. Further, the two fuels showed the same response to changes in the crankcase pressure. The solubility of propane in the oil is approximately an order of magnitude lower than for gasoline.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Technical Paper

Study on Characteristics of Gasoline Fueled HCCI Using Negative Valve Overlap

2006-11-13
2006-32-0047
Gasoline fueled Homogeneous Charge Compression Ignition (HCCI) combustion with internal exhaust gas re-circulation using Negative Valve Overlap (NOL) was investigated by means of calculation and experiment in order to apply this technology to practical use with sufficient operating range and with acceptable emission and fuel consumption. In this paper we discuss the basic characteristics of NOL-HCCI with emphasis on the influence of intake valve timing on load range, residual gas fraction and induction air flow rate. Emission and fuel consumption under various operation conditions are also discussed. A water-cooled 250cc single cylinder engine with a direct injection system was used for this study. Three sets of valve timing were selected to investigate the effect of intake valve opening duration. Experimental results demonstrated that an engine speed of approximately 2000rpm yields an NMEP (Net Mean Effective Pressure) range from 200kPa to 400kPa.
Technical Paper

MIXPC Turbocharging System for Diesel Engines

2006-10-16
2006-01-3390
A newly developed turbocharging system, named MIXPC, is proposed and the performance of the proposed system applied to diesel engines is evaluated. The aim of this proposed system is to reduce the scavenging interference between cylinders, and to lower the pumping loss in cylinders and the brake specific fuel consumption. In addition, exhaust manifolds of simplified design can be constructed with small dimensions, low weight and a single turbine entry. A simulation code based on a second-order FVM+TVD (finite volume method + total variation diminishing) is developed and used to simulate engines with MIXPC. By simulating a 16V280ZJG diesel engine using the MPC turbocharging system and MIXPC, it is found that not only the average scavenging coefficient of MIXPC is larger than that of MPC, but also cylinders of MIXPC have more homogeneous scavenging coefficients than that of MPC, and the pumping loss and BSFC of MIXPC are lower than those of MPC.
Technical Paper

Investigation of the Effect of DPF Loading and Passive Regeneration on Engine Performance and Emissions Using an Integrated System Simulation

2006-04-03
2006-01-0263
An integrated system model containing sub-models for a diesel engine, NOx and soot emissions, and a diesel particulate filter (DPF) has been used to simulate stead-state engine operating conditions. The simulation results have been used to investigate the effect of DPF loading and passive regeneration on engine performance and emissions. This work is the continuation of previous work done to create an overall diesel engine/exhaust system integrated model. As in the previous work, a diesel engine, exhaust system, engine soot emissions, and diesel particulate filter (DPF) sub-models have been integrated into an overall model using Matlab Simulink. For the current work new sub-models have been added for engine-out NOx emissions and an engine feedback controller. The integrated model is intended for use in simulating the interaction of the engine and exhaust aftertreatment components.
Technical Paper

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

2006-04-03
2006-01-0921
The heavy-duty diesel engine industry is required to meet stringent emission standards. There is also the demand for more fuel efficient engines by the customer. In a previous study on an engine with variable intake valve closure timing, the authors found that an early single injection and accompanying premixed charge compression ignition (PCCI) combustion provides advantages in emissions and fuel economy; however, unacceptably high peak pressures and rates of pressure-rise impose a severe operating constraint. The use of a Pressure Reactive Piston assembly (PRP) as a means to limit peak pressures is explored in the present work. The concept is applied to a heavy-duty diesel engine and genetic algorithms (GA) are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to provide an optimized set of operating variables.
Technical Paper

A Modeling Investigation of Combustion Control Variables During DI-Diesel HCCI Engine Transients

2006-04-03
2006-01-1084
A comprehensive system level modeling approach is used to understand the effects of the various physical actuators during diesel HCCI transients. Control concepts during transient operations are simulated using a set of actuators suitable for combustion control in diesel HCCI engines (intake valve actuation, injection timing, cooled EGR, intake boost pressure and droplet size). The impact of these actuating techniques on the overall engine performance is quantified by investigating the amount of actuation required, timing of actuation and the use of a combination of actuators. Combined actuation improved actuation space that can be used to phase combustion timing better and in extending the operating range. The results from transient simulations indicate that diesel HCCI operation would benefit from the combined actuation of intake valve closure, injection timing, boost and cooled EGR.
Technical Paper

Transient High-Pressure Hydrogen Jet Measurements

2006-04-03
2006-01-0652
Schlieren visualization was performed to investigate hydrogen injection into a quiescent chamber. The injection pressures investigated were 52 and 104 bar, and the chamber density ranged from 1.15 to 12.8 kg/m3, giving rise to underexpanded jets for all conditions. The expansion waves outside the nozzle were clearly visible with hydrogen, and the effect was confirmed with studies of nitrogen injected into a nitrogen environment. The distance between the expansion wave fronts was found to scale directly with the ratio of the exit pressure to the chamber pressure. The jet tip penetration rate was measured and was found to increase with injection pressure, and decrease with chamber density as expected. A mass- and momentum-preserving scheme was developed to relate the underexpanded jet to a subsonic jet of larger diameter.
Technical Paper

The Use of Variable Geometry Sprays With Low Pressure Injection for Optimization of Diesel HCCI Engine Combustion

2005-04-11
2005-01-0148
A numerical study of the effects of injection parameters and operating conditions for diesel-fuel HCCI operation is presented with consideration of Variable Geometry Sprays (VGS). Methods of mixture preparation are explored that overcome one of the major problems in HCCI engine operation with diesel fuel and conventional direct injection systems, i.e., fuel loss due to wall impingement and the resulting unburned fuel. Low pressure injection of hollow cone sprays into the cylinder of a production engine with the spray cone angle changing during the injection period were simulated using the multi-dimensional KIVA-3V CFD code with detailed chemistry. Variation of the starting and ending spray angles, injection timing, initial cylinder pressure and temperature, swirl intensity, and compression ratio were explored. As a simplified case of VGS, two-pulse, hollow-cone sprays were also simulated.
Technical Paper

Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations

2004-03-08
2004-01-0558
A reduced chemical reaction mechanism is developed and validated in the present study for multi-dimensional diesel HCCI engine combustion simulations. The motivation for the development of the reduced mechanism is to enhance the computational efficiency of engine stimulations. The new reduced mechanism was generated starting from an existing n-heptane mechanism (40 species and 165 reactions). The procedure of generating the reduced mechanism included: using SENKIN to produce the ignition delay data and solution files, using XSENKPLOT to analyze the base mechanism and to identify important reactions and species, eliminating unimportant species and reactions, formulating the new reduced mechanism, using the new mechanism to generate ignition delay data, and finally adjusting kinetic constants in the new mechanism to improve ignition delay and engine combustion predictions to account for diesel fuel cetane number and composition effects.
Technical Paper

Optimization of Injection Rate Shape Using Active Control of Fuel Injection

2004-03-08
2004-01-0530
The effect of injection rate shape on spray evolution and emission characteristics is investigated and a methodology for active control of fuel injection is proposed. Extensive validation of advanced vaporization and primary jet breakup models was performed with experimental data before studying the effects of systematic changes of injection rate shape. Excellent agreement with the experiments was obtained for liquid and vapor penetration lengths, over a broad range of gas densities and temperatures. Also the predicted flame lift-off lengths of reacting diesel fuel sprays were in good agreement with the experiments. After the validation of the models, well-defined rate shapes were used to study the effect of injection rate shape on liquid and vapor penetration, flame lift-off lengths and emission characteristics.
Technical Paper

Modeling and Experiments of Dual-Fuel Engine Combustion and Emissions

2004-03-08
2004-01-0092
The combustion and emissions of a diesel/natural gas dual-fuel engine are studied. Available engine experimental data demonstrates that the dual-fuel configuration provides a potential alternative to diesel engine operation for reducing emissions. The experiments are compared to multi-dimensional model results. The computer code used is based on the KIVA-3V code and consists of updated sub-models to simulate more accurately the fuel spray atomization, auto-ignition, combustion and emissions processes. The model results show that dual-fuel engine combustion and emissions are well predicted by the present multi-dimensional model. Significant reduction in NOx emissions is observed in both the experiments and simulations when natural gas is substituted for diesel fuel. The HC emissions are under predicted by numerical model as the natural gas substitution is increased.
Technical Paper

Modeling the Effect of Primary Atomization on Diesel Engine Emissions

2003-03-03
2003-01-1041
A new primary breakup model was developed and applied to simulate the diesel fuel spray and atomization process. The continuous liquid fuel jet was simulated by a discrete Lagrangian particle method, and the primary breakup of the jet was calculated using a new 1-D Eulerian method that provides the jet breakup time and drop size distribution. A set of correlations of the breakup characteristics, including the breakup time and drop size, were developed for a range of operating conditions. The correlations were then used in the KIVA code to predict the jet primary breakup. For drop secondary breakups, the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model was employed. The new primary breakup model was first validated by comparison to experimental breakup length and jet liquid tip penetration lengths. Predictions of the new breakup model were also compared with experimental data and predictions of the standard breakup model.
Technical Paper

Split-Spray Piston Geometry Optimized for HSDI Diesel Engine Combustion

2003-03-03
2003-01-0348
A combustion chamber geometry design optimization study has been performed on a high-speed direct-injection (HSDI) automotive diesel engine at a part-load medium-speed operating condition using both modeling and experiments. A model-based optimization was performed using the KIVA-GA code. This work utilized a newly developed 6-parameter automated grid generation technique that allowed a vast number of piston geometries to be considered during the optimization. Other salient parameters were included that are known to have an interaction with the chamber geometry. They included the start of injection (SOI) timing, swirl ratio (SR), exhaust gas recirculation percentage (EGR), injection pressure, and the compression ratio (CR). The measure of design fitness used included NOx, soot, unburned hydrocarbon (HC), and CO emissions, as well as the fuel consumption. Subsequently, an experimental parametric study was performed using the piston geometry found by the numerical optimization.
Technical Paper

Reduction of Emissions and Fuel Consumption in a 2-Stroke Direct Injection Engine with Multidimensional Modeling and an Evolutionary Search Technique

2003-03-03
2003-01-0544
An optimization study combining multidimensional CFD modeling and a global, evolutionary search technique known as the Genetic Algorithm has been carried out. The subject of this study was a 2-stroke, spark-ignited, direct-injection, single-cylinder research engine (SCRE). The goal of the study was to optimize the part load operating parameters of the engine in order to achieve the lowest possible emissions, improved fuel economy, and reduced wall heat transfer. Parameters subject to permutation in this study were the start-of-injection (SOI) timing, injection duration, spark timing, fuel injection angle, dwell between injections, and the percentage of fuel mass in the first injection pulse. The study was comprised of three cases. All simulations were for a part load, intermediate-speed condition representing a transition operating regime between stratified charge and homogeneous charge operation.
Technical Paper

Modeling and Simulation of a Dual Fuel (Diesel/Natural Gas) Engine With Multidimensional CFD

2003-03-03
2003-01-0755
A dual fuel engine simulation model was formulated and the combustion process of a diesel/natural gas dual fuel engine was studied using an updated KIVA-3V Computational Fluid Dynamic (CFD) code. The dual fuel engine ignition and combustion process is complicated since it includes diesel injection, atomization and ignition, superimposed with premixed natural gas combustion. However, understanding of the combustion process is critical for engine performance optimization. Starting from a previously validated Characteristic-Timescale diesel combustion model, a natural gas combustion model was implemented and added to simulate the ignition and combustion process in a dual fuel bus engine. Available engine test data were used for validation of both the diesel-only and the premixed spark-ignition operation regimes. A new formulation of the Characteristic-Timescale combustion model was then introduced to allow smooth transition between the combustion regimes.
Technical Paper

Modeling Autoignition and Engine Knock Under Spark Ignition Conditions

2003-03-03
2003-01-0011
A computer model that is able to predict the occurrence of knock in spark ignition engines has been developed and implemented into the KIVA-3V code. Three major sub-models were used to simulate the overall process, namely the spark ignition model, combustion model, and end-gas auto-ignition models. The spark ignition and early flame development is modeled by a particle marker technique to locate the flame kernel. The characteristic-time combustion model is applied to simulate the propagation of the regular flame. The autoignition chemistry in the end-gas was modeled by a reduced chemical kinetics mechanism that is based on the Shell model. The present model was validated by simulating the experimental data in three different engines. The spark ignition and the combustion models were first validated by simulating a premixed Caterpillar engine that was converted to run on propane. Computed cylinder pressure agrees well with the experimental data.
X