Refine Your Search

Topic

Author

Search Results

Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Optimization of Body Joint Stiffness and Structure

2022-03-29
2022-01-0756
A body joint is one of the most major factors affecting the overall body stiffness in a body system. Thus, in order to optimize the body system, the joint must be also optimized. In order to optimize a body joint, it is necessary to first identify the efficiency of the joint itself. Then, the joint stiffness targets for each joint must be set by analyzing the interaction between joint stiffness and overall body stiffness and the function of the joint in terms of vehicle performance. Finally, an optimal joint structure should be designed with an optimal design methodology. In this study, an optimal methodology for the joint stiffness and design is introduced. Based on this research, an optimized joint design for each joint was applied to the new SUV model resulting in a lightweight body with a required body stiffness.
Technical Paper

Development of the Active Sound Generation Technology Using Motor Driven Power Steering System

2020-09-30
2020-01-1536
As the original engine sound is usually not enough to satisfy the driver’s desire for a sporty and fascinating sound, Active Noise Control (ANC) and Active Sound Design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicles using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifiers or actuators. This paper presents a new technology for generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) of a mass-production steering system. The existing steering hardware or motor is not changed, but only additional software is added. Firstly, an algorithm of this technology, called Active Sound Generation (ASG), is introduced which is compiled and included in the ECU target code. Then the high frequency noise issue and its countermeasures are presented.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

A Study on Control Logic Design for Power Seat

2019-04-02
2019-01-0466
The large luxury sedan seat has a 22-way Movement. It offers a wide range of adjustments to enhance passenger comfort performance while it has many constraints on movement in constrained indoor space. In addition, the power seat is operated by a motor, which makes it difficult for the user to determine the amount of adjustment, unlike determining the amount of adjustment by the power and feel of a person, such as manual seat adjustment. IMS, one-touch mode, is also constrained by parameters such as indoor space package, user's lifestyle, etc. during function playback. This paper aims to design the seat control logic to achieve the best seat comfort while satisfying each constraint. The results of this study are as follows. Increase robustness of power seat control logic. Provide optimal adjustments and comfort at each location. Offer differentiated custom control and seating modes for each seat. Improve customer satisfaction and quality by upgrading software.
Technical Paper

Optimization of Slot Disc Shape for Improving Brake Fade Performance

2018-10-05
2018-01-1883
Due to improvements in vehicle powertrain performance, friction material fade performance is becoming an important topic. For this reason, needs for studies to improve thermal characteristics of the brake system is increasing. Methods for improving the fade characteristics have several ways to improve the thermal characteristic of friction materials and increase disc capacity. However, increasing disc capacity(size) have some risk of weight and cost rise, and friction factor improvements in friction material tend to cause other problems, such as increasing squeal wire brush noise and increasing metal pick up on disc surface. Therefore, a slot disc study is needed to overcome the problems discussed previously. Currently, there is few research history for slot disc related to fade and metal pickup improvements.
Technical Paper

Incorporation of Friction Material Surface Inhomogeneity in Complex Eigenvalue Analysis to Improve the Accuracy of Brake Squeal Analysis

2018-10-05
2018-01-1873
The sliding surface of the brake friction material is not uniform but composed of random contact plateaus with a broad pressure distribution, which are known to closely related to the triggering mechanism of friction induced noise and vibrations. The non-uniform contact plateaus are attributed to the various ingredients in the friction material with a broad range of physical properties and morphology and the size and stiffness of the plateau play crucial roles in determining the friction instability. The incorporation of friction surface inhomogeneity is, therefore, crucial and has to be counted to improve the accuracy of the numerical calculation to simulate brake noise. In this study, the heterogeneous nature of the friction material surface was employed in the simulation to improve the correlation between numerical simulations and experimental results.
Technical Paper

An Application of Acoustic Metamaterial for Reducing Noise Transfer through Car Body Panels

2018-06-13
2018-01-1566
This paper presents the design of an additional structure based on acoustic metamaterial (AMM) for the reduction of vibro-acoustic transfer function of a car body panel. As vehicles are lighter and those engine forces are bigger recently, it has become more difficult to reduce the vibration and noise transfer through body panels by using just conventional NVH countermeasures. In this research, a new approach based on AMM is tried to reduce the vibration and noise transfer of a firewall panel. First, a unit cell structure based on the locally resonant metamaterial is devised and the unit cell’s design variables are studied to increase the wave attenuation in the stop band of a dispersion curve, where the Floquet-Bloch theorem is used to estimate the dispersion curve of a two-dimensional periodic structure. Also, the vibration transfer and the vibro-acoustic transfer are predicted in a FE model of meta-plate which is composed of a periodic system of the devised unit cell.
Technical Paper

Research on Stick & Sprag-Slip Phenomenon of Door Waist Belts

2018-04-03
2018-01-0674
The squeak noise generated during the moving of the door glass has a influence on the performance of vehicles felt by the consumer. In order to improve the noise, it is necessary to understand the principle of a friction vibration. In this paper, it is confirmed that the principle on the waist belt is most closely related to stick-slip and sprag-slip among various vibration characteristics. Stick-slip is expressed by energy accumulation and divergence due to difference in static and dynamic friction coefficient. Sprag-slip define instability of geometric structure due to angle of lips on the belt. In this paper, the physical model and the energy equation are established for the above two phenomena. Stick-slip can be solved by decreasing the difference of the static and dynamic friction coefficient. Sprag-slip is caused by the ratio of compressive and shear stiffness of the lips. The belt uses flocking to ensure durability, not coating.
Technical Paper

Analysis of Rear Brake Grinding Noise by Rear Suspension Types

2017-09-17
2017-01-2486
Brake grinding noise is caused by the friction of the disc and pads. The friction generates vibration and it transmits to the body via the chassis system. We called it structure-borne noise. To improve the noise in the vehicle development, the aspects of chassis or body's countermeasure occurs many problems, cost and time. In this reason many brake companies try to make solution with brake system, like brake pad materials or disc surface condition. However the countermeasures of excitation systems also have a lot of risk. It could be occurred side-effects of braking performance, and need to re-verify brake noise like Creep-groan, Groan, Squeal, Judder and so on. For this reason, it is essential to make a robust chassis system in the initial development stage of the vehicle for the most desirable grinding noise-resistant vehicle. This paper is about rear brake grind noise path analysis and countermeasure of chassis system. There are two steps to analysis.
Technical Paper

Analysis of Vehicle Voice Recognition Performance in Response to Background Noise and Gender Based Frequency

2017-06-05
2017-01-1888
Voice Recognition (VR) systems have become an integral part of the infotainment systems in the current automotive industry. However, its recognition rate is impacted by external factors such as vehicle cabin noise, road noise, and internal factors which are a function of the voice engine in the system itself. This paper analyzes the VR performance under the effect of two external factors, vehicle cabin noise and the speakers’ speech patterns based on gender. It also compares performance of mid-level sedans from different manufacturers.
Technical Paper

A Research on Brand Sound Positioning and Implementing with Active Sound Design

2017-06-05
2017-01-1754
This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
Journal Article

A Novel Method for Objective Evaluation of Interior Sound in a Passenger Car and Its Application to the Design of Interior Sound in a Luxury Passenger Car

2017-06-05
2017-01-1758
Recently the interior sound is actively generated by the active sound design (ASD) device in a passenger car. Therefore, the objective evaluation method for the sound quality of actively designed sounds is required. In previous research, the sound quality of interior sound has been presented with powerful and pleasant for the existing passenger car. This paper presents a novel approach method for the objective evaluation of powerfulness and pleasantness of actively designed interior sound. The powerfulness has been evaluated based on the degreed of modulation and a quantity of low frequency booming of the sound in the paper. On the other hand, the pleasantness is evaluated based on the slope ratio of harmonic orders per octave in frequency domain. These evaluation methods are successfully applied to the objective evaluation of luxury passenger car.
Journal Article

Optimization of Active Grille Shutters Operation for Improved Fuel Economy

2017-03-28
2017-01-1513
The airflow into the engine bay of a passenger car is used for cooling down essential components of the vehicle, such as powertrain, air-conditioning compressor, intake charge air, batteries, and brake systems, before it returns back to the external flow. When the intake ram pressure becomes high enough to supply surplus cooling air flow, this flow can be actively regulated by using arrays of grille shutters, namely active grille shutters (AGS), in order to reduce the drag penalty due to excessive cooling. In this study, the operation of AGS for a generic SUV-type model vehicle is optimized for improved fuel economy on a highway drive cycle (part of SFTP-US06) by using surrogate models. Both vehicle aerodynamic power consumption and under-hood cooling performance are assessed by using PowerFLOW, a high-fidelity flow solver that is fully coupled with powertrain heat exchanger models.
Journal Article

On the Use of Driver-in-the-Loop (DIL) Systems in Commercial Vehicle Chassis Development

2017-01-10
2017-26-0242
A vehicle simulation model is developed, validated and integrated into a closed-loop virtual driving environment using a state-of-the-art hexapod driving simulator. Thirty variant states are implemented and evaluated subjectively on steering and handling performance quality and quantity. Standard open-loop objective testing manoeuvres are simulated and performance metrics are calculated, allowing for a systematic cross-correlation process. Graphical analysis of the correlation metrics proves that chassis changes may accurately be felt through the simulator interface. It is proposed how obtained correlation models may serve for driver-feel optimizing target setting in early vehicle development stages, frontloading a great deal of costly prototype testing. System requirements are established and benefits and limitations are portrayed.
Technical Paper

Development of an Algorithm to Automatically Detect and Distinguish Squeak and Rattle Noises

2015-06-15
2015-01-2258
Squeak and rattle (S&R) noises are undesirable noises caused by friction-induced vibration or impact between surfaces. While several computer programs have been developed to automatically detect and rate S&R events over the years, no reported work has been found that can detect squeak and rattle noises and distinguish them. Because the causes of squeak noises and rattle noises are different, knowing if it is a squeak noise or rattle noise will be very helpful for automotive engineers to choose an appropriate measure to solve the problem. The authors have developed a new algorithm to differentiate squeak noises and rattle noises, and added it to the S&R detection algorithm they had developed previously. The new algorithm utilizes a combination of sound quality metrics, specifically sharpness, roughness, and fluctuation strength.
Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

A Study on the Transfer Path Analysis of Brake Creep Groan Noise

2014-09-28
2014-01-2510
Creep groan noise occurs in a just moving vehicle by the simultaneous application of torque to the wheel and the gradual release of brake pressure in-vehicle. It is the low frequency noise giving the driver a very uncomfortable feeling. It is caused by the stick-sleep phenomenon at the lining and disc interface. Recently, the field claim of low frequency creep groan has increased. There are a lot of efforts to improve creep groan noise by means of modification of lining material. In this paper, Transfer path of creep groan noise was analyzed through ODS and TPA. Additionally the correlation between Source (Brake torque variation, Brake vibration) and Creep Groan Sound level was discussed. Finally countermeasure to Creep Groan noise was suggested.
Technical Paper

Study of Reduction Method of Brake Grind Noise

2014-09-28
2014-01-2513
Rust accumulated on disc surfaces causes brake judder and grind noise. This paper deals with grind noise(wire brush brake noise) in vehicles which is a low frequency vibration and broadband noise problem at 100∼1kHz that appears in low vehicle speed. Recently, the customer complaints have increased for grind and creep groan noise more than squeal noise. Low frequency brake noise is a combined effect of brake and suspension systems working with each other. The noise transfer path is also important. Experimental results are confirmed through ODS, Modal, TPA and 3D acoustic camera for noise transmission path. Finally, reduction methods of grind noise are presented.
Journal Article

Investigation of Thermo-Acoustic Excitations in a Rijke Tube Geometry

2014-04-01
2014-01-1981
Flow generated acoustic sources are of significant import for automotive applications since perception of noise is a critical customer satisfaction issue. High temperature acoustic sources known as thermo-acoustics such as those occurring inside an exhaust system of a vehicle, an important subset of acoustic sources, is the subject of the investigation. In this article, we study a Rijke tube configuration that consists of a vertical and hollow cylindrical tube open at both ends where sound is generated by buoyancy driven flow as a result of a heated wire gauze placed in the bottom half of the tube. This configuration captures the essence of the thermo-acoustic phenomena and was investigated both numerically and experimentally and good agreement was observed between the two.
X