Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Robust Optimization for Real World CO2 Reduction

2018-05-30
2018-37-0015
Ground transportation industry contributes to about 14% of the global CO2 emissions. Therefore, any effort in reducing global CO2 needs to include the design of cleaner and more energy efficient vehicles. Their design needs to be optimized for the real-world conditions. Using wind tunnels that can only reproduce idealized conditions quite often does not translate into real-world on-road CO2 reduction and improved energy efficiency. Several recent studies found that very rarely can the real-world environment be represented by turbulence-free conditions simulated in wind tunnels. The real-world conditions consist of both transversal flow velocity component (causing an oncoming yaw flow) as well as large-scale turbulent fluctuations, with length scales of up to many times the size of a vehicle. The study presented in this paper shows how the realistic wind affects the aerodynamics of the vehicle.
Technical Paper

Simulation-Driven Process to Evaluate Vehicle Integration Aspects in Brake Thermal Design

2017-05-24
2017-36-0011
Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
Journal Article

Accurate Fuel Economy Prediction via a Realistic Wind Averaged Drag Coefficient

2017-03-28
2017-01-1535
The ultimate goal for vehicle aerodynamicists is to develop vehicles that perform well on the road under real-world conditions. One of the most important metrics to evaluate vehicle performance is the drag coefficient. However, vehicle development today is performed mostly under controlled settings using wind tunnels and computational fluid dynamics (CFD) with artificially uniform upstream conditions, neglecting real-world effects due to road turbulence from wind and other vehicles. Thus, the drag coefficients computed with these methods might not be representative of the real performance of the car on the road. This might ultimately lead engineers to develop design solutions and aerodynamic devices which, while performing well in idealized conditions, do not perform well on the road. For this reason, it is important to assess the vehicle’s drag as seen in real-world environments. An effort in this direction is represented by using the wind-averaged drag.
Journal Article

Aerodynamic Comparison of Tractor-Trailer Platooning and A-Train Configuration

2015-09-29
2015-01-2897
Modern aerodynamic Class 8 freight tractors can improve vehicle freight efficiency and fuel economy versus older traditional style tractors when pulling Canadian style A- or B-Train double trailer long combination vehicles (LCV's) at highway speeds. This paper compares the aerodynamic performance of a current generation aerodynamic tractor with several freight hauling configurations through computational fluid dynamics evaluations using the Lattice-Boltzmann methodology. The configurations investigated include the tractor hauling a standard 53′ trailer, a platooning configuration with a 30′ separation distance, and an A-Train configuration including two 48′ trailers connected with a dolly converter. The study demonstrates CFD's capability of evaluating extremely long vehicle combinations that might be difficult to accomplish in traditional wind tunnels due to size limitations.
Technical Paper

A Coupled Approach to Truck Drum Brake Cooling

2015-09-29
2015-01-2901
Trucks can carry heavy load and when applying the brakes during for example a mountain downhill or for an abrupt stop, the brake temperatures can rise significantly. Elevated temperatures in the drum brake region can reduce the braking efficiency or can even cause the brake system to fail, catch fire or even break. It therefore needs to be designed such to be able to transfer the heat out of its system by convection, conduction and/or radiation. All three heat transfer modes play an important role since the drum brakes of trucks are not much exposed to external airflow, a significant difference from disk brakes of passenger cars analyzed in previous studies. This makes it a complex heat transfer problem which is not easy to understand. Numerical methods provide insight by visualization of the different heat transfer modes. Presented is a numerical method that simulates the transient heat transfer of a truck drum brake system cooldown at constant driving speed.
Journal Article

Aerodynamic Drag and Engine Cooling Effects on Class 8 Trucks in Platooning Configurations

2015-09-29
2015-01-2896
The increasing importance of reducing greenhouse gas emissions and the ongoing evolution of vehicle-to-vehicle connectivity technologies have generated significant interest in platooning for commercial vehicles, where two or more vehicles travel in same traffic lane in relatively close proximity. This paper examines the effect of platooning on four increasingly aerodynamic tractor-trailer configurations, using a Lattice Boltzmann based CFD solver. Each platoon consisted of three identical tractor-trailer configurations traveling in the same lane at 65mph. Two different vehicle to vehicle gaps were studied, 5m and 9m, in addition to singleton (solitary) vehicles, representing an effectively infinite gap. Aerodynamic drag for the lead, middle, and trailing vehicle in the platooning configurations were compared to the corresponding single vehicle tractor-trailer configuration.
Journal Article

Comparison of Computational Simulation of Automotive Spinning Wheel Flow Field with Full Width Moving Belt Wind Tunnel Results

2015-04-14
2015-01-1556
One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
Technical Paper

Automotive Cabin Infotainment System Thermal Management

2015-04-14
2015-01-0328
The level of infotainment in today's vehicles and the customer expectation of the functionality imply a significant effort is required on thermal management of the systems, to guarantee their full operation under all operating conditions. The worst case thermal conditions the system will get exposed to are caused by solar loading on the cabin or heat up as a result of cabin heating. Simulation of a solar load driven case will be discussed in this paper. The long soak conditions during these tests result in the modelling requirement for long natural convection periods. This is creating a challenge for the conventional CFD simulations in turnaround time. New simulation methodology has resulted in significant speed up enabling these fully transient simulations in a reasonable turnaround time to enable programme support. A two phase approach to simulating this problem is proposed in this paper.
Journal Article

Validation and Design of Heavy Vehicle Cooling System with Waste Heat Recovery Condenser

2014-09-30
2014-01-2339
Fuel efficiency for tractor/trailer combinations continues to be a key area of focus for manufacturers and suppliers in the commercial vehicle industry. Improved fuel economy of vehicles in transit can be achieved through reductions in aerodynamic drag, tire rolling resistance, and driveline losses. Fuel economy can also be increased by improving the efficiency of the thermal to mechanical energy conversion of the engine. One specific approach to improving the thermal efficiency of the engine is to implement a waste heat recovery (WHR) system that captures engine exhaust heat and converts this heat into useful mechanical power through use of a power fluid turbine expander. Several heat exchangers are required for this Rankine-based WHR system to collect and reject the waste heat before and after the turbine expander. The WHR condenser, which is the heat rejection component of this system, can be an additional part of the front-end cooling module.
Technical Paper

Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics

2012-04-16
2012-01-0297
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
Technical Paper

Engine Room Lay-out Study for Fuel Efficiency and Thermal Performance

2012-04-16
2012-01-0639
Systematic numerical simulations were performed for the improvement of fuel efficiency and thermal performance of a compact size passenger vehicle. Both aerodynamic and thermal aspects were considered concurrently. For the sake of systematic evaluation, our study was conducted employing various design changes in multiple steps: 1) analysis of the baseline design; 2) elimination of the engine room components; 3) modification of the engine room component layout; 4) modification of the aerodynamic components (such as under body cover and cooling ducts). The vehicle performance characteristics corresponding to different design options were analyzed in terms of aerodynamic coefficient, engine coolant temperature, and surface temperatures of thermally critical components such as battery and exhaust manifold. Finally optimal design modification solutions for better vehicle performance were proposed.
Technical Paper

The Aerodynamic Development of the Tesla Model S - Part 2: Wheel Design Optimization

2012-04-16
2012-01-0178
Aerodynamic efficiency plays an increasingly important role in the automotive industry, as the push for increased fuel economy becomes a larger factor in the engineering and design process. Longitudinal drag is used as the primary measure of aerodynamic performance, usually cited as the coefficient of drag (CD). This drag is created mostly by the body shape of the vehicle, but the wheel and tire system also contributes a significant portion. In addition to the longitudinal drag created by the body and wheels, rotational drag can add an appreciable amount of aerodynamic resistance to the vehicle as well. Reducing power consumption is an especially vital aspect in electric vehicle (EV) design. As the world's first luxury electric sedan, the Tesla Model S combines a premium driving experience with an electric drivetrain package that allows for unique solutions to many vehicle subsystems.
Journal Article

Combined Analysis of Cooling Airflow and Aerodynamic Drag for a Class 8 Tractor Trailer Combination

2011-09-13
2011-01-2288
Long haul tractor design in the future will be challenged by freight efficiency standards and emission legislations. Along with any improvements in aerodynamics, this will also require additional cooling capacity to handle the increased heat rejection from next generation engines, waste heat recovery and exhaust gas recirculation systems. Fan engagement will also have to be minimized under highway conditions to maximize fuel economy. These seemingly contradictory requirements will require design optimization via analysis techniques capable of predicting both the aerodynamic drag and engine cooling airflow accurately. This study builds on previous work [1] using a Lattice Boltzmann based computational method on a Volvo VNL tractor trailer combination. Simulation results are compared to tests conducted at National Research Council (NRC) Canada's wind tunnel.
Journal Article

Simulation of Rear Glass and Body Side Vehicle Soiling by Road Sprays

2011-04-12
2011-01-0173
Numerical simulation of aerodynamics for vehicle development is used to meet a wide range of performance targets, including aerodynamic drag for fuel efficiency, cooling flow rates, and aerodynamic lift for vehicle handling. The aerodynamic flow field can also be used to compute the advection of small particles such as water droplets, dust, dirt, sand, etc., released into the flow domain, including the effects of mass, gravity, and the forces acting on the particles by the airflow. Previous efforts in this topic have considered the water sprays ejected by rotating wheels when driving on a wet road. The road spray carries dirt particles and can obscure the side and rear glazing. In this study, road sprays are considered in which the effects of additional water droplets resulting from splashing and dripping of particles from the wheel house and rear under body are added to help understand the patterns of dirt film accumulation on the side glass and rear glass.
Technical Paper

Optimization of Aerodynamics and Engine Cooling Performance of a JMC Mid-Size Truck using Simulation

2010-10-05
2010-01-2032
The engineering process in the development of commercial vehicles is facing more and more stringent emission regulations while at the same time the market demands for better performance but with lower fuel consumption and higher reliability. Respective targets require better utilization of existing or even higher engine cooling capacity and optimization of aerodynamic performance for reduced drag. In order to aid on achieving both goals, special attention should be paid on understanding both external and under hood flow structures. This paper describes an optimization study for reducing aerodynamic drag and increasing engine cooling performance conducted on a Light Truck at Jiangling Motors Corporation (JMC). The approach is using simulation based on a LBM solver coupled with a heat exchanger model. Such methodology was used to predict both aerodynamic and cooling characteristics and help highlighting potential areas for improvement.
Technical Paper

Aerodynamic Study of a Production Tractor Trailer Combination using Simulation and Wind Tunnel Methods

2010-10-05
2010-01-2040
The importance of fuel economy and emission standards has increased rapidly with high fuel costs and new environmental regulations. This requires analysis techniques capable of designing the next generation long-haul truck to improve both fuel efficiency and cooling. In particular, it is important to have a predictive design tool to assess how exterior design changes impact aerodynamic performance. This study evaluates the use of a Lattice Boltzmann based numerical simulation and the National Research Council (NRC) Canada's wind tunnel to assess aerodynamic drag on a production Volvo VNL tractor-trailer combination. Comparisons are made between the wind tunnel and simulation to understand the influence of wind tunnel conditions on truck aerodynamic performance. The production VNL testing includes a full range of yaw angles to demonstrate the influence of cross wind on aerodynamic drag.
Journal Article

Response of a Prototype Truck Hood to Transient Aerodynamic Loading

2009-04-20
2009-01-1156
A study was performed to determine the fluid structure interaction (FSI) for a prototype truck hood for transient aerodynamic loads. The growing need to make vehicle panels lighter to enhance the fuel economy of vehicles has made hood panels more prone to deformation and vibration from aerodynamic loads. Moreover, as global pedestrian crash standards become more stringent to provide safer front end designs to minimize injuries to head and leg, automotive manufacturers are being required to design flexible hoods that crush significantly more than the present designs to absorb the crash energy better. These flexible designs lead to potentially undesirable deformations and/or vibration behavior of the hood at typical highway speeds.
Technical Paper

Under-hood Thermal Simulation of a Class 8 Truck

2007-10-30
2007-01-4280
A validation study was performed comparing the simulation results of the Lattice-Boltzmann Equation (LBE) based flow solver, PowerFLOW®, to cooling cell measurements conducted at Volvo Trucks North America (VTNA). The experimental conditions were reproduced in the simulations including dynamometer cell geometry, fully detailed under-hood, and external tractor geometry. Interactions between the air flow and heat exchangers were modeled through a coupled simulation with the 1D-tool, PowerCOOL™, to solve for engine coolant and charge air temperatures. Predicted temperatures at the entry and exit plane of the radiator and charge-air-cooler were compared to thermocouple measurements. In addition, a detailed flow analysis was performed to highlight regions of fan shroud loss and cooling airflow recirculation. This information was then used to improve cooling performance in a knowledge-based incremental design process.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Cooling Airflow Simulation for Passenger Cars using Detailed Underhood Geometry

2006-10-31
2006-01-3478
Air flow in the underhood area is the primary source of engine cooling. A quick look at the vehicle underhood reveals exceptionally complex geometry. In addition to the engine, there are fans, radiator, condenser, other heat exchangers and components. The air flow needs to have adequate access to all relevant parts that require cooling. Due to complex geometry, the task to ensure sufficient air cooling is not a simple one. The air flow entering from the front grille is affected by many components on its path through the underhood. Even small geometry details affect the flow direction and can easily cause recirculation regions which reduce the cooling efficiency. Therefore, air cooling flow analysis requires detailed treatment of the underhood geometry and at the same time accurate air flow modeling. Recent advances in the lattice-Boltzmann equation (LBE) modeling are allowing both.
X