Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Surface Roughness on Tribological and NVH Behaviour of Brake System

2024-04-09
2024-01-2732
Brake assemblies are an essential part of any vehicle, and their effective functioning is critical for the safety and comfort of passengers. The surface roughness of brake components plays a vital role in figuring out their tribological and NVH (Noise, Vibration, and Harshness) behavior. It is essential to understand the impact of surface roughness on brake performance to ensure efficient braking and it has been a topic of interest in the automotive industry. In this study, the influence of surface roughness on the wear, and noise characteristics of a brake assembly has been investigated. The study also provides insights into the relationship between surface roughness, frictional behavior, and NVH performance, which can be used to improve the design and manufacturing of brake assemblies. The brake assembly includes of a disc, caliper, and brake pads, which work together to convert the kinetic energy of the vehicle into heat energy, has been considered in this study.
Technical Paper

Automotive Applications Multiaxial Proving Grounds and Road Test Simulator: Durability Prediction Methodology Development and Correlation for Rubber Components

2023-04-11
2023-01-0723
Many chassis and powertrain components in the transportation and automotive industry experience multi-axial cyclic service loading. A thorough load-history leading to durability damage should be considered in the early vehicle production steps. The key feature of rubber fatigue analysis discussed in this study is how to define local critical location strain time history based on nominal and complex load time histories. Material coupon characterization used here is the crack growth approach, based on fracture mechanics parameters. This methodology was utilized and presented for a truck engine mount. Temperature effects are not considered since proving ground (PG) loads are generated under isothermal high temperature and low frequency conditions without high amounts of self-heating.
Technical Paper

Virtual Accelerometer Approach to Create Vibration Profile for Automotive Component Shake Test

2023-04-11
2023-01-0722
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles.
Technical Paper

Accurate Automotive Spinning Wheel Predictions Via Deformed Treaded Tire on a Full Vehicle Compared to Full Width Moving Belt Wind Tunnel Results

2023-04-11
2023-01-0843
As the automotive industry is quickly changing towards electric vehicles, we can highlight the importance of aerodynamics and its critical role in reaching extended battery ranges for electric cars. With all new smooth underbodies, a lot of attention has turned into the effects of rim designs and tires brands and the management of these tire wakes with the vehicle. Tires are one of the most challenging areas for aerodynamic drag prediction due to its unsteady behavior and rubber deformation. With the simulation technologies evolving fast regarding modeling spinning tires for aerodynamics, this paper takes the prior work and data completed by the authors and investigates the impact on the flow fields and aerodynamic forces using the most recent developments of an Immerse Boundary Method (IBM). IBM allows us to mimic realistically a rotating and deformed tire using Lattice Boltzmann methods.
Technical Paper

Cybersecurity by Agile Design

2023-04-11
2023-01-0035
ISO/SAE 21434 [1] Final International Standard was released September 2021 to great fanfare and is the most prominent standard in Automotive Cybersecurity. As members of the Joint Working Group (JWG) the authors spent 5 years developing the 84 pages of precise wording acceptable to hundreds of contributors. At the same time the auto industry had been undergoing a metamorphosis probably unmatched in its hundred-year history. A centerpiece of the metamorphosis is the adoption of the Agile development method to meet market demands for time-to-market and flexibility of design. Unfortunately, a strategic decision was made by the JWG to focus ISO/SAE 21434 on the V-Model method. Agile does not break ISO/SAE 21434. Agile is a framework that can be adapted to suit any process. In the end the goals are the same regardless of development method; security by design must be achieved.
Technical Paper

Fatigue Life Prediction and Correlation of Engine Mount Elastomeric Bushing using A Crack Growth Approach

2022-03-29
2022-01-0760
In a passenger car, suspension link bushings, engine and transmission mount bushings and bump-stops are made of elastomeric materials, to maximize the durability and comfort. Thus, deformation behavior of rubber and its durability is important for product design and development. In virtual engineering, simulating rubber fatigue is a complex exercise, since it needs right modeling strategy and coupon based testing material data. Principal stretches based Ogden model is used to characterize the hyper elastic deformation behavior of natural rubber. Fatigue crack growth approach used here for the fatigue analysis. Engine torque strut mount is used to control the engine and transmission fore aft motion and it is connected between body and Powertrain (PT) system. Powertrain events are predominant for damage contribution to mount failure. So, it is important to predict fatigue life of mount elastomer bushing under Powertrain loading.
Technical Paper

Fatigue Endurance Limit of Fasteners in Automotive Application

2022-03-29
2022-01-0260
Fasteners, commonly used in automotive industry, play an important role in the safety and reliability of the vehicle structural system. In practical application, bolted joints would never undergo fully reversed loading; there always will be positive mean stress on bolt. The mean stress has little influence on the fatigue life if the maximum stress is lower than a threshold which is near the yield stress of the bolt. However, when the sum of the mean stress and the stress amplitude exceeds the threshold, the endurance limit stress amplitude decreases fast as the mean stress increases. The purpose of this paper is to research the fatigue endurance limit of a fastener and establish the threshold for safe design in automotive application. In order to obtain the fatigue endurance limit at different mean stress levels, various mechanical tests were performed on M12x1.75 and M16x1.5 Class 10.9 fasteners using MTS test systems.
Journal Article

Development of a CAE Modeling Technique for Heavy Duty Cargo Weight using a DFSS Methodology

2022-03-29
2022-01-0774
Cargo box is one of the indispensable structures of a pickup truck which makes it capable of transporting heavy cargo weights. This heavy cargo weight plays an important role in durability performance of the box structure when subjected to road load inputs. Finite element representation for huge cargo weight is always challenging, especially in a linear model under dynamic proving ground road load durability analysis using a superposition approach. Any gap in virtual modeling technique can lead to absurd cargo box modes and hence durability results. With the existing computer aided engineering (CAE) approach, durability results could not correlate much with physical testing results. It was crucial to have the right and robust CAE modeling technique to represent the heavy cargo weight to provide the right torsional and cargo modes of the box structure and in turn good durability results.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Technical Paper

Effect of Casting Process on Strength Behaviour of Automotive Alloy Wheel

2021-04-06
2021-01-0800
Strength and fatigue assessment of chassis components are essentially influenced by the material used and manufacturing processes chosen. The manufacturing process of chassis components decides the variation in the mechanical properties of the component, which has an impact on the strength/fatigue performance. Investigating the design concerning the manufacturing processes is vital to the industry. Standard computer aided engineering (CAE) procedures for validating the alloy wheels usually consider the material properties as homogeneous. There was a gap between test results and CAE durability prediction (as per standard procedure). Incorporating the manufacturing process related characteristics with the strength simulation will be a viable solution to reduce this gap. This study was intended at developing a procedure for the strength analysis of an alloy wheel by considering the manufacturing process.
Technical Paper

Multiple Metamodeling Approaches for Improved Design Space Mapping

2021-04-06
2021-01-0840
The complexities involved in an optimization problem at a system level require knowledge base that has information on different approaches and customization of these approaches to a specific class of the optimization problems. One approach that is commonly used is the metamodel based design optimization. The metamodel is 1) a conceptual model for capturing, in abstract terms, essential characteristics of a given optimization problem, and 2) a schema of sufficient formality to enable the problem modeled to be serialized to statements in a concrete optimization language [1]. Optimization is performed based on this metamodel. This metamodel approach has been proven effective and accurate in providing the global optimum. Depending upon the computational hardware availability in an organization, the metamodel based optimization could be much faster way of achieving the optimized solution. However, the accuracy of the optimization is highly dependent on the quality of metamodel generated.
Technical Paper

FCA US LLC-Magnesium Closures Development

2021-04-06
2021-01-0278
This paper will focus on automotive development highlights of FCA US LLC magnesium intensive closures components. Deploying lightweight materials is one of many key strategies that has been implemented to reduce vehicle mass and improve overall fuel economy while maintaining rigorous functional objective performance. This paper will outline some basic design and manufacturing considerations for magnesium closures. The development of the 2017 Chrysler Pacifica liftgate and 2018 Jeep® Wrangler swing gate along with the two generations of magnesium spare tire brackets will be the focus.
Technical Paper

Development of a Robust Thermal Management System for Lead-Acid Batteries

2021-04-06
2021-01-0232
Lead-acid batteries have been widely used in automotive applications. Extending battery life and reducing battery warranty requires reducing any deteriorating to battery internals and battery electrolyte. At the end of battery life, it is required to maintain at least 50% of its initial capacity [1,2]. The rate of battery degradation increases at high battery temperatures due to increased rate of electrochemical reactions and potential loss of battery electrolyte. For Lead-Acid batteries, an electrolyte solution consists of diluted sulfuric acid. Battery electrolyte/water loss affects battery performance. Water loss is caused by high internal battery temperature and gassing off due to battery electrochemistry. High temperatures, high charging rates, and over charging can cause a loss of electrolyte in non-sealed batteries. In sealed batteries, the same factors will cause an increase in temperature and pressure which can eventually result in the release of hydrogen and oxygen gases.
Technical Paper

Parametric Design Study of McPherson Strut to Stabilizer Bar Link Bracket Weld Fatigue Using Design for Six Sigma and Taguchi Approach

2021-04-06
2021-01-0235
Vehicle suspension parts are subjected to variable road loads, manufacturing process variation and high installation loads in assembly process. Seam welding can be considered as such process to connect more components and parts. Typical in a Mc Pherson suspension system stabilizer bar link is connected to the strut assembly through ball stud and clamped to a bracket welded to the outer strut tube. Cracks have been observed in the stabilizer bar link bracket welds of vehicles in the field, effecting the functionality of the suspension system. During preliminary phase of product development CAE assessment of the seam weld is carried out against road load data, if the design does not meet the targets enabler studies are carried out in an iterative approach. Various design variables (control factors) can be considered to carry out the iterations.
Technical Paper

Application of DFSS Taguchi Method to Design Robust Shock Tower

2021-04-06
2021-01-0234
Design for Six Sigma (DFSS) is an essential tool and methodology for innovation projects to improve the product design/process and performance. This paper aims to present an application of the DFSS Taguchi Method for an automotive/vehicle component. High-Pressure Vacuum Assist Die Casting (HPVADC) technology is used to make Cast Aluminum Front Shock Tower. During the vehicle life, Shock Tower transfers the road high impact loads from the shock absorber to the body structure. Proving Ground (PG) and washout loads are often used to assess part strength, durability life and robustness. The initial design was not meeting the strength requirement for abusive washout loads. The project identified eight parameters (control factors) to study and to optimize the initial design. Simulation results confirmed that all eight selected control factors affect the part design and could be used to improve the Shock Tower's strength and performance.
Technical Paper

CAE Modeling Static and Fatigue Performance of Short Glass Fiber Reinforced Polypropylene Coupons and Components

2020-04-14
2020-01-1309
One approach of reducing weight of vehicles is using composite materials, and short glass fiber reinforced polypropylene is one of most popular composite materials. To more accurately predict durability performance of structures made of this kind of composite material, static and fatigue performance of coupons and components made of a short glass fiber reinforced polypropylene has been physically studied. CAE simulations have been conducted accordingly. This paper described details of CAE model setup, procedures, analysis results and correlations to test results for static, fiber orientation flow and fatigue of coupons and a battery tray component. The material configurations include fiber orientations (0, 20 and 90 degrees), and mean stress effect (R = -1.0, -0.5, -0.2, 0.1 and 0.4). The battery tray component samples experience block cycle loading with loading ratio of R = -0.3 and 0.3. The CAE predictions have reasonable correlations to the test results.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

Application of Multivariate Control Chart Techniques to Identifying Nonconforming Pallets in Automotive Assembly Plants

2020-04-14
2020-01-0477
The Hotelling multivariate control chart and the sample generalized variance |S| are used to monitor the mean and dispersion of vehicle build vision data including the pallet information to identify the non-conforming pallets that are used in body shops of FCA US LLC assembly plants. An iterative procedure and the Gaussian mixture model (GMM) are used to rank the non-conforming or bad pallets in the order of severity. The Hotelling multivariate T2 test statistic along with Mason-Tracy-Young (MYT) signal decomposition method is used to identify the features that are affected by the bad pallets. These algorithms were implemented in the Advanced Pallet Analysis module of the FCA US software Body Shop Analysis Toolbox (BSAT). The identified bad pallets are visualized in a scatter plot with a different color for each of the top bad pallets. The run chart of an affected feature confirms the bad pallet by highlighting data points from the bad pallet.
Technical Paper

Reconciling Simultaneous Evolution of Ground Vehicle Capabilities and Operator Preferences

2020-04-14
2020-01-0172
An objective evaluation of ground vehicle performance is a challenging task. This is further exacerbated by the increasing level of autonomy, dynamically changing the roles and capabilities of these vehicles. In the context of decision making involving these vehicles, as the capabilities of the vehicles improve, there is a concurrent change in the preferences of the decision makers operating the vehicles that must be accounted for. Decision based methods are a natural choice when multiple conflicting attributes are present, however, most of the literature focuses on static preferences. In this paper, we provide a sequential Bayesian framework to accommodate time varying preferences. The utility function is considered a stochastic function with the shape parameters themselves being random variables. In the proposed approach, initially the shape parameters model either uncertain preferences or variation in the preferences because of the presence of multiple decision makers.
Technical Paper

Experimental Study on Static and Fatigue Performance of Self-Piercing Riveted Joints and Adhesively Bonded Self-Piercing Riveted Joints Connecting Steel and Aluminum Components

2020-04-14
2020-01-0177
This paper describes an experimental study on the performance of self-piercing riveted (SPR) joints and adhesively bonded SPR joints connecting steel and aluminum components under both quasi-static and cyclic loading. The joint configurations cover a wide range of material gauges, types and grades. Two and three thickness joints, with and without adhesive are also part of this study. Load versus deflection behavior, load carrying capacity, fatigue life and the failure modes for each type of joint are discussed. This study focuses on the influence of dissimilar material and adhesives to the joint performance.
X