Refine Your Search

Topic

Author

Search Results

Technical Paper

Engine Stall Recovery and Restart Procedure for Hybrid Electric Vehicles

2024-04-09
2024-01-2783
Engine stall, a noteworthy occurrence in traditional vehicles, poses challenges due to the inability to disconnect the engine from the driveline. Consequently, in such scenarios, the vehicle experiences a loss of propulsion, necessitating the driver to pull over. The severity of propulsion loss events is underscored by regulatory bodies like the National Highway Traffic Safety Administration (NHTSA), potentially leading to costly recalls for Automotive Manufacturers. Therefore, proactive measures to avert Loss of Propulsion (LoP) events, including the exploration of remedial actions, are strongly encouraged during powertrain controls design. In contrast, hybrid electric vehicles offer a unique advantage. Given the ability to connect or disconnect the engine from the driveline in hybrid or electric-only modes, an engine stall in hybrid mode need not result in a complete loss of propulsion.
Technical Paper

Wheel & Axle Disconnect Controls on Hybrid Electric Powertrains

2024-04-09
2024-01-2776
With the proliferation of electric vehicles in the market, it has become important for Automotive OEMs (Original Equipment Manufacturers) to focus on delivering a higher driving range while also maximizing performance. One approach OEMs are actively considering in meeting this goal is to include a secondary drive axle disconnect into the powertrain which has the potential to improve the overall driving range by about 6-8.3% [4]. This paper outlines the need for a novel controls architecture to make the Powertrain controls software modular and to reduce the development time needed to provide robust powertrain control software. To do this, the electrified powertrain torque controls at STELLANTIS NV takes a decentralized controls architecture approach, by separating the axle disconnect controls subsystem (ADCS) from the primary path of torque controls. The ADCS takes in information such as the desired axle state and controls the axle disconnect actuators to achieve that state.
Technical Paper

Mathematical formulation and Analysis of Brake Judder

2023-04-11
2023-01-0148
The Brake judder is a low-level vibration caused due to Disc Thickness Variation (DTV), Temperature, Brake Torque Variation (BTV), thermal degradation, hotspot etc. which is a major concern for the past decades in automobile manufacturers. To predict the judder performance, the modelling methods are proposed in terms of frequency and BTV respectively. In this study, a mathematical model is constructed by considering full brake assembly, tie rod, coupling rod, steering column, and steering wheel as a spring mass system for identifying judder frequency. Simulation is also performed to predict the occurrence of brake judder and those results are validated with theoretical results. Similarly, for calculating BTV a separate methodology is proposed in CAE and validated with experimental and theoretical results.
Technical Paper

OBD Limit Part Creation Using DFSS Methodology: NMHC Catalyst Emissions Control System

2022-03-29
2022-01-0553
In the light duty diesel segment, the need persists for an advanced control system to monitor the health of an aftertreatment system throughout a vehicle’s life in order to maintain compliance with ever tightening emissions levels. In on-board diagnostics (OBD), every diagnostic is validated during development stages to detect when a system under monitoring of that diagnostic has failed. This necessitates the need to create parts which represent a failure that would be observed on the vehicle. These failed parts, referred to as limit or threshold parts, are developed through a limit part creation process. Although there are commonalities amongst Original Equipment Manufacturers (OEM), each OEM has their own detection logic which will require a unique and specific limit part. Various methods exist for creating these limit parts, and each method produces a different combination of ability to detect the failure and its associated tailpipe emissions.
Technical Paper

EURO-NCAP MPDB Compatibility Impact Model Assessment Using a Virtual Barrier Deformation Tracker

2021-04-06
2021-01-0834
Euro NCAP committee has created the Mobile Progressive Deformable Barrier (MPDB) “Compatibility” test that could change the way we design the vehicle front structure for impact [4]. To assist the crashworthy design development activity for this new mode of impact test, CAE barrier models [2] have been developed and used by vehicle safety CAE engineers. These impact models are designed to generate the barrier deformation data essential for evaluation of the scores of the two rating parameters of “Standard Deviation”, “Bottom-Out” for the MPDB impact event. In test, a physical 3-D scanner measures the barrier deformation depth and draws contour plot necessary for determining above two rating parameters. For model results assessment, a virtual scanner, which can emulate the measurement accuracy of the physical scanner is required.
Technical Paper

Virtual Evaluation of Seat Shake Performance Using Four Poster Shaker

2021-04-06
2021-01-0325
For the designing of world class vehicles, ride comfort is one of the criteria that vehicle manufacturers are constantly trying to improve. The automotive seating system is an important sub-system in a vehicle that contributes to the ride comfort of the vehicle occupants. Seat vibrations are perceived by the occupants and make them feel uncomfortable during driving conditions. These vibrations are majorly transferred from engine and road excitation loads. For road excitation loads, the road testing may not be accurately repeatable, and measurements based on four post shakers are used to assess the discomfort. The major challenges for the vehicle manufactures is the availability of physical prototypes at an early stage of vehicle development and any changes in the design due to test validation leads to huge cost and time.
Technical Paper

A Case Study in DOC OBD Limit Parts’ Performance and Detection

2021-04-06
2021-01-0438
The reduction of automotive emissions is instrumental in the fight against air pollution and its impact on global warming. This realization has empowered governments around the world to mandate lower levels of vehicle emissions requiring the Original Equipment Manufacturers (OEMs) to implement advanced aftertreatment technologies in their applications. Achieving emission levels as low as SULEV30 or SULEV20 would have been impossible only a couple of decades ago, however, these lower levels of emissions are now a possibility through advanced control strategies and aftertreatment systems. As a part of this mandate to lower emissions, OEMs are also continuously monitoring the health and performance of their aftertreatment and control components. The implementation of On Board Diagnostics (OBD) ensures that control systems are functioning robustly and the emission levels are achieved and maintained to high mileages for the life of the vehicle.
Journal Article

On the Expansion of On-Board Diagnostics (OBD) to Electric Propulsion Systems in Battery Electric Vehicles

2021-04-06
2021-01-0439
Currently the On-Board Diagnostics (OBD) requirements enforced by government agencies do not cover electric vehicles. Although the California Air Resources Board (CARB) mandates all light and medium duty vehicles and heavy duty engine dynamometer certified engines equipped with fossil fuel-powered engines, including all hybrid vehicles, must follow the OBD requirements in California Code of Regulation (CCR) 1968.2 and 1971.1, Battery Electric vehicles (BEVs), are exempted from OBD requirements. The legislators, such as CARB, have started to make proposals for on-board systems to monitor electric propulsion system health. In addition, there may be customer needs to obtain standard vehicle service information and the Original Equipment Manufacturers (OEMs) may also have the desire for common diagnostic strategies across different vehicle applications to lower the development costs.
Technical Paper

Pedestrian Head Impact, Automated Post Simulation Results Aggregation, Visualization and Analysis Using d3VIEW

2020-04-14
2020-01-1330
Euro NCAP Pedestrian head impact protocol mandates the reduction of head injuries, measured using head injury criteria (HIC). Virtual tools driven design comprises of simulating the impact on the hood and post processing the results. Due to the high number of impact points, engineers spend a significant portion of their time in manual data management, processing, visualization and score calculation. Moreover, due to large volume of data transfer from these simulations, engineers face data bandwidth issues particularly when the data is in different geographical locations. This deters the focus of the engineer from engineering and also delays the product development process. This paper describes the development of an automated method using d3VIEW that significantly improves the efficiency and eliminates the data volume difficulties there by reducing the product development time while providing a higher level of simulation results visualization.
Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Journal Article

Longitudinal Vehicle Dynamics Modeling for AWD/4WD Vehicles to Study Torque Split between Front and Rear Axles

2020-04-14
2020-01-1410
All-wheel Drive (AWD) is a mature technology and most automobile manufacturers offer this feature on their vehicles. Improved traction, enhanced vehicle stability, and better handling are some of the key characteristics of AWD vehicles which are achieved by distributing the appropriate level of torque to the front and rear axles. Accurately capturing the torque split between the two axles is essential for sizing of driveline components like gears, bearings, and shafts. Traditionally, the torque split is considered to be either 50-50%, or solely proportional to the static weight distribution between the two axles. Design decisions are made based on historical test data. In this paper a longitudinal vehicle dynamics model for AWD systems is proposed to understand the influence of various key factors such as dynamic weight transfer, compliance of driveline components, and changing tire radius on the torque split.
Technical Paper

Evaluation of Corpuscular Particle Method (CPM) in LS-DYNA for Airbag Modeling

2020-04-14
2020-01-0978
This paper presents a systematic study to assess maturity of Corpuscular Particle Method (CPM) to accurately predict airbag deployment kinematics and its overall responses. The study was performed in three phases: (1) a correlation assessment of CPM predicted inflator characteristics to closed tank tests; (2) a correlation assessment of CPM predicted airbag deployment kinematics, airbag pressure, reaction force from a static deployment of a Driver Airbag (DAB) and (3) a correlation prediction of the impactor force by CPM versus impactor force from physical drop tower tests. These studies were repeated using the Uniform Pressure Method (UPM), to compare the numerical methods for their accuracy in predicting the physical test, computational cost, and applicability. Results from the study suggest that CPM satisfies the fundamental energy laws, and accurately captures the realistic airbag deployment kinematics, especially during the early deployment stage, unlike UPM.
Journal Article

Assessing Fit and Finish Design Sensitivity by Mapping Measurements to Utility

2020-04-14
2020-01-0600
This paper proposes a method to evaluate the sensitivity of the perceived quality of a panel interface design to variation in the measurements of fit and finish. The novelty of this approach is in the application of the concept of utility to fit and finish. The significance is in the ability to evaluate alternative designs with regard to perceived quality long before time and money are spent on their realization. In the automotive industry “fit and finish” is the term applied to the precision of the alignment of one part to another. Fit and finish gives the buyer a sense of the overall quality of the vehicle purely from an aesthetic perspective. Fit and finish is usually evaluated by the manufacturer through dimensional measurements of the gap and flushness conditions between panels.
Technical Paper

A Robust Structure Analysis on Automotive Door Armrest

2019-01-09
2019-26-0006
An automobile door is one vital commodity which has its role in vehicle’s function, strength, safety, dynamics and aesthetic parameters. The door system comprises of individual components and sub-assemblies such as door upper, bolster, armrest, door main panel, map-pocket, handle, speaker and tweeter grille. Among them, armrest is an integral part which provides function and also takes care of some safety parameter for the customers. The basic function of an armrest is to provide ergonomic relief to occupant for resting his hand. Along with this, it also facilitates occupant safety during a side impact collision by absorbing the energy and not imparting the reactive force on occupant. Thus an armrest has evolved as a feature of passive safety. The armrest design should be stiff enough to withstand required elbow load condition with-in the acceptable deflection criteria. On the other hand, armrest has to absorb the dynamic force by deflecting proportionally to the side impact load.
Technical Paper

Optimization of Structural Adhesives in BIW to Improve Full Vehicle Crash Performance

2017-03-28
2017-01-0255
The crashworthiness of body-in-white (BIW) plays a vital role in full vehicle crash performance. The structural integrity of BIW is controlled via strength of the spot welds and adhesives that are the primary entities to join sheet metal. The number of welds and amount of adhesives in the entire BIW directly affects the cost and the cycle time of the BIW; which makes them a good candidate for optimization. However optimization of the welds and/or adhesives not only reduces the number of connections but also provides the opportunity to improve the structural performance and mass saving by placing them optimally for the structural responses. This paper discusses the optimization of full vehicle structural performance for the small overlap crash event using the length of adhesives in the BIW as parameters. Included in the study were length of the adhesives and gage variables, defined in the front-end structure of the vehicle.
Journal Article

Transient Modeling of Vehicle Under-hood and Underbody Component Temperatures

2016-04-05
2016-01-0281
In this paper, transient component temperatures for the vehicle under-hood and underbody are estimated. The main focus is on the component temperatures as a result of radiation from exhaust, convection by underbody or under-hood air and heat conduction through the components. The exhaust surface temperature is simulated as function of time and for various vehicle duty cycles such as city traffic, road load and grade driving conditions. At each time step the radiation flux to the surrounding component is estimated, heat addition or removal by convection is evaluated based on air flow, air temperature and component surface area. Simulation results for under-hood and underbody components are compared against vehicle test data. The comparison shows very good agreement between simulated and measured component temperatures under both steady state and transient conditions.
Technical Paper

Fleet Fatality Risk and its Sensitivity to Vehicle Mass Change in Frontal Vehicle-to-Vehicle Crashes, Using a Combined Empirical and Theoretical Model

2015-11-09
2015-22-0011
The objective of this study is to analytically model the fatality risk in frontal vehicle-to-vehicle crashes of the current vehicle fleet, and its sensitivity to vehicle mass change. A model is built upon an empirical risk ratio-mass ratio relationship from field data and a theoretical mass ratio-velocity change ratio relationship dictated by conservation of momentum. The fatality risk of each vehicle is averaged over the closing velocity distribution to arrive at the mean fatality risks. The risks of the two vehicles are summed and averaged over all possible crash partners to find the societal mean fatality risk associated with a subject vehicle of a given mass from a fleet specified by a mass distribution function. Based on risk exponent and mass distribution from a recent fleet, the subject vehicle mean fatality risk is shown to increase, while at the same time that for the partner vehicles decreases, as the mass of the subject vehicle decreases.
Journal Article

Assessment of Similarity of a Set of Impact Response Time Histories

2015-04-14
2015-01-1441
Two methods of assessing the similarity of a set of impact test signals have been proposed and used in the literature, which are cumulative variance-based and cross correlation-based. In this study, a normalized formulation unites these two approaches by establishing a relationship between the normalized cumulative variance metric (v), an overall similarity metric, and the normalized magnitude similarity metric (m) and shape similarity metric (s): v=1 − m · s. Each of these ranges between 0 and 1 (for the practical case of signals acquired with the same polarity), and they are independent of the physical unit of measurement. Under generally satisfied conditions, the magnitude similarity m is independent of the relative time shifts among the signals in the set; while the shape similarity s is a function of these.
Technical Paper

Development of a Small Rear Facing Child Restraint System Virtual Surrogate to Evaluate CRS-to-Vehicle Interaction and Fitment

2015-04-14
2015-01-1457
Automotive interior design optimization must balance the design of the vehicle seat and occupant space for safety, comfort and aesthetics with the accommodation of add-on restraint products such as child restraint systems (CRS). It is important to understand the range of CRS dimensions so that this balance can be successfully negotiated. CRS design is constantly changing. In particular, the introduction of side impact protection for CRS as well as emphasis on ease of CRS installation has likely changed key design points of many child restraints. This ever-changing target creates a challenge for vehicle manufacturers to assure their vehicle seats and occupant spaces are compatible with the range of CRS on the market. To date, there is no accepted method for quantifying the geometry of child seats such that new designs can be catalogued in a simple, straightforward way.
X