Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Structure of High-Pressure Fuel Sprays

1987-02-01
870598
A multi-dimensional model was used to calculate interactions between spray drops and gas motions close to the nozzle in dense high-pressure sprays. The model also accounts for the phenomena of drop breakup, drop collision and coalescence, and the effect of drops, on the gas turbulence. The calculations used a new method to describe atomization (a boundary condition in current spray codes). The method assumes that atomization and drop breakup are indistinguishable processes within the dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops (‘blobs’) that have a size equal to the nozzle exit diameter. The injected ‘blobs’ breakup due to interaction with the gas as they penetrate, yielding a core region which contains relatively large drops. The computed core length agrees well with available measurements of core length in high-pressure sprays.
Technical Paper

Effect of Drop Breakup on Fuel Sprays

1986-02-01
860469
Recently developed computer models are being applied to calculate complex interactions between sprays and gas motions. The three- dimensional KIVA code was modified to address drop breakup and was used to study fuel sprays. The results show that drop breakup influences spray penetration, vaporization and mixing in high pressure sprays. The spray drop size is the outcome of a competition between drop breakup and drop coalescence phenomena, and the atomization details at the injector are lost during these size rearrangements. Drop breakup dominates in hollow-cone sprays because coalescence is minimized by the expanding spray geometry. The results imply that it may be possible to use a simple injector and still control spray drop size and vaporization if the flow details are modified so as to enhance drop breakup and coalescence.
X