Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Clean Snowmobile Challenge - 3: Refinement of Production Engines and New Control Strategies

2017-03-01
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using the EPA test procedure and standard for off-road vehicles, along with more stringent U.S. National Park Best Available Technology (BAT) standards that are likened to those of the California Air Resourced Board (CARB). Innovative technology solutions include: • Standard application for diesel engine designs • Applications to address and test both engine and track noise • Benefits of the Miller cycle and turbocharging The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise.
Book

Clean Snowmobile Challenge - 2: The Revival of the 2-stroke Engine and Studying Flex Fuel Engines

2017-02-01
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using the EPA test procedure and standard for off-road vehicles. Innovative technology solutions include: • Engine Design: improving the two-stroke, gas direct injection (GDI) engine • Applications of new muffler designs and a catalytic converter • Solving flex-fuel design and engine power problems The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise. The competition includes internal combustion engine categories that address both gasoline and diesel, as well as the zero emissions category in which range and draw bar performance are measured.
Book

Clean Snowmobile Challenge - 1: The Early Years, 4-Stroke Engines Make Their Debut

2016-12-22
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using E10 gasoline (10% ethanol mixed with pump gasoline). Performance technologies that are presented include: • Engine Design: application of the four-stroke engine • Applications to address both engine and track noise • Exhaust After-treatment to reduce emissions The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise. The competition includes internal combustion engine categories that address both gasoline and diesel, as well as the zero emissions category in which range and draw bar performance are measured.
Technical Paper

Innovative Exergy-Based Combustion Phasing Control of IC Engines

2016-04-05
2016-01-0815
Exergy or availability is the potential of a system to do work. In this paper, an innovative exergy-based control approach is presented for Internal Combustion Engines (ICEs). An exergy model is developed for a Homogeneous Charge Compression Ignition (HCCI) engine. The exergy model is based on quantification of the Second Law of Thermodynamic (SLT) and irreversibilities which are not identified in commonly used First Law of Thermodynamics (FLT) analysis. An experimental data set for 175 different ICE operating conditions is used to construct the SLT efficiency maps. Depending on the application, two different SLT efficiency maps are generated including the applications in which work is the desired output, and the applications where Combined Power and Exhaust Exergy (CPEX) is the desired output. The sources of irreversibility and exergy loss are identified for a single cylinder Ricardo HCCI engine.
Technical Paper

Fuel-Optimal Strategies for Vehicle Supported Military Microgrids

2016-04-05
2016-01-0312
Vehicles with power exporting capability are microgrids since they possess electrical power generation, onboard loads, energy storage, and the ability to interconnect. The unique load and silent watch requirements of some military vehicles make them particularly well-suited to augment stationary power grids to increase power resiliency and capability. Connecting multiple vehicles in a peer-to-peer arrangement or to a stationary grid requires scalable power management strategies to accommodate the possibly large numbers of assets. This paper describes a military ground vehicle power management scheme for vehicle-to-grid applications. The particular focus is overall fuel consumption reduction of the mixed asset inventory of military vehicles with diesel generators typically used in small unit outposts.
Technical Paper

Numerical Simulations for Spray Characterization of Uneven Multiple Jet-to-Jet Impingement Injectors

2016-04-05
2016-01-0840
Spray structure has a significant effect on emissions and performance of an internal combustion engine. The main objective of this study is to investigate spray structures based on four different multiple jet impingement injectors. These four different multiple jet-to-jet impingement injectors include 1). 4-hole injector (Case 1), which has symmetric inwardly opening nozzles; 2). 5-1-hole (Case 2); 3). 6-2-hole (Case 3); and 4). 7-3-hole (Case 4) which corresponding to 1, 2, 3 numbers of adjacent holes blocked in a 5-hole, 6-hole, and 7-hole symmetrical drill pattern, respectively. All these configurations are basically 4-holes but with different post collision spray structure. Computational Fluid Dynamics (CFD) work of these sprays has been performed using an Eulerian-Lagrangian modelling approach.
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Technical Paper

Modeling of Long Fiber Reinforced Plastics

2015-04-14
2015-01-0698
Long fiber reinforced plastics (LFRP) have exhibited superior mechanical performance and outstanding design flexibility, bringing them with increasing popularity in the automotive structural design. Due to the injection molding process, the distribution of long fibers varies at different locations throughout the part, resulting in anisotropic and non-uniform mechanical properties of the final LFRP parts. Images from X-ray CT scan of the materials show that local volume fraction of the long fibers tends to be higher at core than at skin layer. Also fibers are bundled and tangled to form clusters. Most of the current micromechanical material models used for LFRP are extended from those for short fibers without adequate validation. The effect of the complexity of long fibers on the material properties is not appropriately considered. Thus, modeling of these materials is lagging behind the material manufacturing and design development, which in turn limits their further development.
Technical Paper

Model Predictive Control for Engine Powertrain Thermal Management Applications

2015-04-14
2015-01-0336
Numerous studies describe the fuel consumption benefits of changing the powertrain temperature based on vehicle operating conditions. Actuators such as electric water pumps and active thermostats now provide more flexibility to change powertrain operating temperature than traditional mechanical-only systems did. Various control strategies have been proposed for powertrain temperature set-point regulation. A characteristic of powertrain thermal management systems is that the operating conditions (speed, load etc) change continuously to meet the driver demand and in most cases, the optimal conditions lie on the edge of the constraint envelope. Control strategies for set-point regulation which rely purely on feedback for disturbance rejection, without knowledge of future disturbances, might not provide the full fuel consumption benefits due to the slow thermal inertia of the system.
Technical Paper

Experimental and Numerical Studies on Combustion Model Selection for Split Injection Spray Combustion

2015-04-14
2015-01-0374
A wide variety of spray models and their associated sub-models exist to assist with numerical spray development studies in the many applicable areas viz., turbines, internal combustion engines etc. The accuracy of a simulation when compared to the experiments varies, as these models chosen are varied. Also, the computational grid plays a crucial role in model correctness; a grid-converged CFD study is more valuable and assists in proper validation at later stages. Of primary relevance to this paper are the combustion models for a grid-converged Lagrangian spray modeling scenario. CONVERGE CFD code is used for simulation of split injection diesel (n-heptane) sprays and a structured methodology, using RNG k-ε turbulence model, is followed to obtain a grid-converged solution for the key Computational Fluid Dynamics (CFD) parameters viz., grid size, injected parcels and spray break-up time constant.
Technical Paper

Effect of Temperature Cycle on Thermomechanical Fatigue Life of a High Silicon Molybdenum Ductile Cast Iron

2015-04-14
2015-01-0557
High silicon molybdenum (HiSiMo) ductile cast iron (DCI) is commonly used for high temperature engine components, such as exhaust manifolds, which are also subjected to severe thermal cycles during vehicle operation. It is imperative to understand the thermomechanical fatigue (TMF) behavior of HiSiMo DCI to accurately predict the durability of high temperature engine components. In this paper, the effect of the minimum temperature of a TMF cycle on TMF life and failure behavior is investigated. Tensile and low cycle fatigue data are first presented for temperatures up to 800°C. Next, TMF data are presented for maximum temperatures of 800°C and minimum cycle temperatures ranging from 300 to 600°C. The data show that decreasing the minimum temperature has a detrimental effect on TMF life. The Smith-Watson-Topper parameter applied at the maximum temperature of the TMF cycle is found to correlate well with out-of-phase (OP) TMF life for all tested minimum temperatures.
Journal Article

Very High Cycle Fatigue of Cast Aluminum Alloys under Variable Humidity Levels

2015-04-14
2015-01-0556
Ultrasonic fatigue tests (testing frequency around 20 kHz) have been conducted on four different cast aluminum alloys each with a distinct composition, heat treatment, and microstructure. Tests were performed in dry air, laboratory air and submerged in water. For some alloys, the ultrasonic fatigue lives were dramatically affected by the environment humidity. The effects of different factors like material composition, yield strength, secondary dendrite arm spacing and porosity were investigated; it was concluded that the material strength may be the key factor influencing the environmental humidity effect in ultrasonic fatigue testing. Further investigation on the effect of chemical composition, especially copper content, is needed.
Technical Paper

Measure of Forming Limit Strain on the Aluminum Sheets Passed Through Draw-Bead by Digital Image Correlation

2015-04-14
2015-01-0598
Accurate determination of the forming limit strain of aluminum sheet metal is an important topic which has not been fully solved by industry. Also, the effects of draw beads (enhanced forming limit behaviors), normally reported on steel sheet metals, on aluminum sheet metal is not fully understood. This paper introduces an experimental study on draw bead effects on aluminum sheet metals by measuring the forming limit strain zero (FLD0) of the sheet metal. Two kinds of aluminum, AL 6016-T4 and AL 5754-0, are used. Virgin material, 40% draw bead material and 60% draw bead material conditions are tested for each kind of aluminum. Marciniak punch tests were performed to create a plane strain condition. A dual camera Digital Image Correlation (DIC) system was used to record and measure the deformation distribution history during the punch test. The on-set necking timing is determined directly from surface shape change. The FLD0 of each test situation is reported in this article.
Technical Paper

Comparative Assessment of Elastio-Viscoplastic Models for Thermal Stress Analysis of Automotive Powertrain Component

2015-04-14
2015-01-0533
In this paper, thermal stress analysis for powertrain component is carried out using two in-house developed elasto-viscoplastic models (i.e. Chaboche model and Sehitoglu model) that are implemented into ABAQUS via its user subroutine UMAT. The model parameters are obtained from isothermal cyclic tests performed on standard samples under various combinations of strain rates and temperatures. Models' validity is verified by comparing to independent non-isothermal tests conducted on similar samples. Both models are applied to the numerical analysis of exhaust manifold subject to temperature cycling as a result of vehicle operation. Due to complexity, only four thermal cycles of heating-up and cooling-down are simulated. Results using the two material models are compared in terms of accuracy and computational efficiency. It is found that the implemented Chaboche model is generally more computationally efficient than Sehitoglu model, though they are almost identical in regard to accuracy.
Technical Paper

Study the Relationship between CP Specimen Width and the Stress Intensity Factor Value around Nugget

2015-04-14
2015-01-0553
SIF value around weld nugget changes when specimen width is different. To investigate the influence of specimen width on SIF value around weld nugget of coach peel specimen (CP), a finite element model was established in this paper. In this model, a contour integral crack was used, and the area around the nugget was treated as crack tip. Results indicated that when specimen width was below 50mm, SIF decreased rapidly with the increase of specimen width. When specimen width was larger than 50mm, SIF almost remained constant with the variation of specimen width. To further study the influences of nugget diameter and sheet thickness on the Width-SIF curves, CP specimens with different nugget diameters (5mm, 6mm and 7mm) and sheet thicknesses (1.2mm, 1.6mm and 2.0mm) were established in ABAQUS. Simulation results of all CP specimens showed a similar relationship between specimen width and SIF.
Journal Article

A Data Mining-Based Strategy for Direct Multidisciplinary Optimization

2015-04-14
2015-01-0479
One of the major challenges in multiobjective, multidisciplinary design optimization (MDO) is the long computational time required in evaluating the new designs' performances. To shorten the cycle time of product design, a data mining-based strategy is developed to improve the efficiency of heuristic optimization algorithms. Based on the historical information of the optimization process, clustering and classification techniques are employed to identify and eliminate the low quality and repetitive designs before operating the time-consuming design evaluations. The proposed method improves design performances within the same computation budget. Two case studies, one mathematical benchmark problem and one vehicle side impact design problem, are conducted as demonstration.
Journal Article

A New Variable Screening Method for Design Optimization of Large-Scale Problems

2015-04-14
2015-01-0478
Design optimization methods are commonly used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges remained is to deal with a large number of design variables for large-scale design optimization problems effectively. In this paper, a new approach based on fuzzy rough set is proposed to address this issue. The concept of rough set theory is to deal with redundant information and seek for a reduced design variable set. The proposed method first exploits fuzzy rough set to screen out the insignificant or redundant design variables with regard to the output functions, then uses the reduced design variable set for design optimization. A vehicle body structure is used to demonstrate the effectiveness of the proposed method and compare with a traditional weighted sensitivity based main effect approach.
Technical Paper

A Modified Particle Swarm Optimization Algorithm with Design of Experiment Technique and a Perturbation Process

2015-04-14
2015-01-0422
Particle swarm optimization (PSO) is a relatively new stochastic optimization algorithm and has gained much attention in recent years because of its fast convergence speed and strong optimization ability. However, PSO suffers from premature convergence problem for quick losing of diversity. That is to say, if no particle discovers a new superiority position than its previous best location, PSO algorithm will fall into stagnation and output local optimum result. In order to improve the diversity of basic PSO, design of experiment technique is used to initialize the particle swarm in consideration of its space-filling property which guarantees covering the design space comprehensively. And the optimization procedure of PSO is divided into two stages, optimization stage and improving stage. In the optimization stage, the basic PSO initialized by Optimal Latin hypercube technique is conducted.
Technical Paper

Comparing Uncertainty Quantification with Polynomial Chaos and Metamodel-Based Strategies for Computationally Expensive CAE Simulations and Optimization Applications

2015-04-14
2015-01-0437
Robustness/Reliability Assessment and Optimization (RRAO) is often computationally expensive because obtaining accurate Uncertainty Quantification (UQ) may require a large number of design samples. This is especially true where computationally expensive high fidelity CAE simulations are involved. Approximation methods such as the Polynomial Chaos Expansion (PCE) and other Response Surface Methods (RSM) have been used to reduce the number of time-consuming design samples needed. However, for certain types of problems require the RRAO, one of the first question to consider is which method can provide an accurate and affordable UQ for a given problem. To answer the question, this paper tests the PCE, RSM and pure sampling based approaches on each of the three selected test problems: the Ursem Waves mathematical function, an automotive muffler optimization problem, and a vehicle restraint system optimization problem.
Journal Article

Research on Validation Metrics for Multiple Dynamic Response Comparison under Uncertainty

2015-04-14
2015-01-0443
Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
X