Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Multibody Dynamics Approach to Leaf Spring Simulation for Upfront Analyses

2015-06-15
2015-01-2228
Drivelines used in modern pickup trucks commonly employ universal joints. This type of joint is responsible for second driveshaft order vibrations in the vehicle. Large displacements of the joint connecting the driveline and the rear axle have a detrimental effect on vehicle NVH. As leaf springs are critical energy absorbing elements that connect to the powertrain, they are used to restrain large axle windup angles. One of the most common types of leaf springs in use today is the multi-stage parabolic leaf spring. A simple SAE 3-link approximation is adequate for preliminary studies but it has been found to be inadequate to study axle windup. A vast body of literature exists on modeling leaf springs using nonlinear FEA and multibody simulations. However, these methods require significant amount of component level detail and measured data. As such, these techniques are not applicable for quick sensitivity studies at design conception stage.
Technical Paper

Sound Package Design for Lightweight Vehicles

2015-06-15
2015-01-2343
OEMs are racing to develop lightweight vehicles as government regulations now mandate automakers to nearly double the average fuel economy of new cars and trucks by 2025. Lightweight materials such as aluminum, magnesium and carbon fiber composites are being used as structural members in vehicle body and suspension components. The reduction in weight in structural panels increases noise transmission into the passenger compartment. This poses a great challenge in vehicle sound package development since simply increasing weight in sound package components to reduce interior noise is no longer an option [1]. This paper discusses weight saving approaches to reduce noise level at the sources, noise transmission paths, and transmitted noise into the passenger compartment. Lightweight sound package materials are introduced to treat and reduce airborne noise transmission into multi-material lightweight body structure.
Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Journal Article

Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications

2015-04-14
2015-01-0252
Electric vehicles are receiving considerable attention because they offer a more efficient and sustainable transportation alternative compared to conventional fossil-fuel powered vehicles. Since the battery pack represents the primary energy storage component in an electric vehicle powertrain, it requires accurate monitoring and control. In order to effectively estimate the battery pack critical parameters such as the battery state of charge (SOC), state of health (SOH), and remaining capacity, a high-fidelity battery model is needed as part of a robust SOC estimation strategy. As the battery degrades, model parameters significantly change, and this model needs to account for all operating conditions throughout the battery's lifespan. For effective battery management system design, it is critical that the physical model adapts to parameter changes due to aging.
Technical Paper

Investigation of Climate Control Power Consumption in DTE Estimation for Electric Vehicles

2014-04-01
2014-01-0713
Distance to empty (DTE) estimation is an important factor to electric vehicle (EV) applications due to its limited driving range. The DTE calculation is based on available energy of the battery and power usage by the powertrain components (e.g. electric motor) and climate control components (e.g. PTC heater and electric AC compressor). The conventional way of estimating the DTE is to treat the power consumed by the climate control system the same as the power by the powertrain for either instantaneous or rolling average estimation. The analysis in this study shows that the power consumption by the climate control system should be estimated based on the current ambient conditions and driver's input instead of using the recorded data from the past driving cycles. The climate control should also be considered separately from the powertrain in power usage rolling average calculation, which results in improvements in DTE estimation especially for extreme hot and cold conditions.
Technical Paper

Development of Battery Hardware-In-the-Loop System Implemented with Reduced-Order Electrochemistry Li-Ion Battery Models

2014-04-01
2014-01-1858
Aggressive battery usage profiles in electrified vehicle applications require extensive efforts in developing battery management strategy and system design determination to guarantee safe operation under every real-world driving conditions. Experiment based approaches have been widely used for battery system development, but higher costs and longer testing time restrain the number of test cases in the product development process. Battery experiments tend to be conservative to avoid inherent risks of battery failure modes under aggressive battery operation close to the capability limits. Battery Hardware-In-the-Loop (HIL) is an alternative way to overcome the limitations of experiment-based approaches. Battery models in the HIL should provide real-time computation capability and high (at least acceptable) prediction accuracy. Equivalent circuit model (ECM) based HILs have been used owing to their relatively good balance between computational time and prediction accuracy.
Technical Paper

Powersplit HEV Performance Simulation Capability

2014-04-01
2014-01-1813
A new performance simulation capability has been developed for powersplit HEVs to enable analytical assessment of new engine technologies in the context of HEV system operation and to analyze/understand important system dynamics and control interactions affecting HEV performance. This new capability allows direct simulation with closed-loop controls and the driver, is compatible with Ford standard HEV system simulation capabilities and enables simulation with multiple levels of model fidelity and feature content across the vehicle system. The combined plant Vehicle Model Architecture (VMA) in Simulink was used for the infrastructure. The simulation capability includes a Dymola model of the powersplit transaxle, a Vehicle System Control (VSC) model implemented in Simulink, a high fidelity 2L Atkinson GT-Power engine model, and a simplified representation of the engine controls in Simulink.
Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Journal Article

Power Management of Hybrid Electric Vehicles based on Pareto Optimal Maps

2014-04-01
2014-01-1820
Pareto optimal map concept has been applied to the optimization of the vehicle system control (VSC) strategy for a power-split hybrid electric vehicle (HEV) system. The methodology relies on an inner-loop optimization process to define Pareto maps of the best engine and electric motor/generator operating points given wheel power demand, vehicle speed, and battery power. Selected levels of model fidelity, from simple to very detailed, can be used to generate the Pareto maps. Optimal control is achieved by applying Pontryagin's minimum principle which is based on minimization of the Hamiltonian comprised of the rate of fuel consumption and a co-state variable multiplied by the rate of change of battery SOC. The approach delivers optimal control for lowest fuel consumption over a drive cycle while accounting for all critical vehicle operating constraints, e.g. battery charge balance and power limits, and engine speed and torque limits.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Correlation Test: Guaporé Mountain Test vs Proving Ground

2013-05-15
2013-36-0038
Downhill tests are widely used as a method of evaluation, development and validation of braking efficiency, friction pair durability, braking balance, as well as fade characteristics and recovery of friction material properties. This test procedure is used for both: passenger vehicles and light & heavy commercial vehicles. The energy levels in the brake system are higher on commercial vehicles and the thermal characteristics much more critical. Added to the fact that such tests are conducted on public highways, it has an intrinsic security risk for both the vehicle tested and all others around. Until a few years ago, it was still feasible to conduct tests downhill on different routes keeping a high security level. Given an increasing traffic on highways, where the test is currently carried out, a need to create a similar downhill procedure (called Guaporé Mountain Test) within a Proving Ground under controlled conditions has been noticed.
Technical Paper

Methodology for Determining the Process of Riveting Brake Linings for Heavy Commercial Vehicles

2013-05-15
2013-36-0029
During the development of a new friction material, besides the interface between lining/drum is also fundamental take in account all aspects involving the attachment of the linings on the brake shoes. This paper presents an optimization approach to the development and manufacturing parameters of brake linings, applied on medium and heavy duty commercial vehicles, aiming to assure the correct specification of the riveted joint clamp forces. These evaluations were conducted based on the quality tools documents and the theoretical aspects of the product usage as well as the modeling of key elements of the referred mechanism throughout various known applications. A calculation methodology was developed based on brake geometry, its generated forces and braking reactions required for each vehicle family.
Technical Paper

How to Make Your Fleet More Sustainable and Save Money: The Ford Fleet Purchase Planner

2013-04-08
2013-01-0506
Ford's portfolio approach to sustainable mobility offers a large range of fuel-efficient engines and alternative-fuel vehicles - including EcoBoost®, hybrid, plug-in hybrid, flexible fuel, battery-electric, B20 biodiesel and compressed natural gas or liquefied petroleum gas (CNG/LPG) vehicles. The Ford Fleet Purchase Planner has been developed to assist fleet customers in comparing these alternatives and understanding which vehicles offer the optimal mix to achieve CO₂ emission reductions while balancing corporate financial goals. Vehicle fleets for large corporations can have thousands of vehicles that are replaced on a timescale of months to years. We present the three main components of the Fleet Purchase Planner (patent pending) that provide fleet customers the lowest cost solution to achieving their sustainability goals: the Vehicle Emissions & Fuel Cost Calculator, the Fleet CO₂ Emissions Footprint Status Calculator, and the Purchase Recommender.
Technical Paper

Modified Bass Model with External Factors for Electric Vehicle Adoption

2013-04-08
2013-01-0505
In recent years, electrification has emerged as an important means to reduce the carbon footprint of personal transportation. A key question for both policy makers and vehicle manufacturers is how quickly electric vehicles (EV) will be adopted by consumers. EV adoption will be impacted by external factors such as the price differential between gasoline and electricity, large incremental vehicle costs, and strong government policies that are far less significant for other advanced vehicle technologies such as hybrid electric vehicles (HEV) or the Ford Eco-Boost engine technology. The ability to reflect these additional externalities in adoption models will improve the reliability of EV market penetration forecasts and the quality of policy analysis. The Bass diffusion model is well established in studies of the adoption of new technologies, but it is not able to reflect those external factors related to EVs in its usual form.
Technical Paper

Ultra-Long Life Oil-Free Supercharger for Fuel Cell and Hybrid Vehicle Power Trains

2013-04-08
2013-01-0478
Automotive hybrid electric vehicle applications require 1 million (or more) start-stops. This same level of start-stops is also required for hydrogen PEM fuel cell vehicles. In this investigation, a test regime is developed to stress the failure mode of a set of airfoil journal bearings caused by start-stops, and conceive a proper improvement to meet the requirement. Airfoil bearings have been limited by the number of start-stops due to their inherent wearout of coating(s) at low speed. A complete electronic air cathode compressor (electronic supercharger) assembly is tested, employing a pair of φ25 mm journal airfoil bearings. The foils have 34 μm of surface PTFE coating. After 50,000 start-stops, the coating is worn through. Next an improved system is tested, which has modified coating on the bearing journal surfaces. These bearings are examined roughly every 250,000 start-stops. After 1 million start-stops, the coating has worn 5 μm.
Technical Paper

System Simulation and Analysis of EPA 5-Cycle Fuel Economy for Powersplit Hybrid Electric Vehicles

2013-04-08
2013-01-1456
To better reflect real world driving conditions, the EPA 5-Cycle Fuel Economy method encompasses high vehicle speeds, aggressive vehicle accelerations, climate control system use and cold temperature conditions in addition to the previously used standard City and Highway drive cycles in the estimation of vehicle fuel economy. A standard Powersplit Hybrid Electric Vehicle (HEV) system simulation environment has long been established and widely used within Ford to project fuel economy for the standard EPA City and Highway cycles. Direct modeling and simulation of the complete 5-Cycle fuel economy test set for HEV's presents significant new challenges especially with respect to modeling vehicle thermal management system and interactions with HEV features and system controls. It also requires a structured, systematic approach to validate the key elements of the system models and complete vehicle system simulations.
Technical Paper

Engine Control Unit Modeling with Engine Feature C Code for HEV Applications

2013-04-08
2013-01-1451
Engine control unit (ECU) modeling using engine feature C code is an increasingly important part of new vehicle analysis and development tools. The application areas of feature based ECU models are numerous: a) cold vehicle fuel economy (FE) prediction required for recently introduced 5-cycle certification; b) vehicle thermal modeling; c) evaporative (purge) systems design; d) model-in-the-loop/software-in-the-loop (MIL/SIL) vehicle control development and calibration. The modeling method presented in the paper embeds production C-code directly into Simulink at a feature level using an S-Function wrapper. A collection of features critical to accurate engine behavior prediction are compiled individually and integrated according to the newly developed Engine Control Model Architecture (ECMA). Custom MATLAB script based tools enable efficient model construction.
Journal Article

Idealized Vehicle Crash Test Pulses for Advanced Batteries

2013-04-08
2013-01-0764
This paper reports a study undertaken by the Crash Safety Working Group (CSWG) of the United States Council for Automotive Research (USCAR) to determine generic acceleration pulses for testing and evaluating advanced batteries subjected to inertial loading for application in electric passenger vehicles. These pulses were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used in this study. Crash test data, in terms of acceleration time histories, were collected from various crash modes conducted by the National Highway Traffic Safety Administration (NHTSA) during their New Car Assessment Program (NCAP) and Federal Motor Vehicle Safety Standards (FMVSS) evaluations, and the Insurance Institute for Highway Safety (IIHS).
Technical Paper

Implementation of ABS System on an Existing Heavy Trucks Line-up in Accordance to Brazilian Resolution No. 312/09 (CONTRAN)

2012-10-02
2012-36-0466
The automotive industry has been increasingly researching and working on improving vehicle and passenger safety over the years. Following countries such as the United States and European Union, the Brazilian government has been publishing many resolutions with the objective of improving the safety of their fleet. With the publication of resolution 312 from CONTRAN (National Traffic Counsel), on April 3rd, 2009, the installation of ABS (Anti-lock Brake System) feature has become mandatory for all car and truck models to be sold in Brazil, following a staggered implementation starting on January 1st, 2010. The ABS system adds to the vehicle's current brake system, not allowing the wheels to lock during braking, which helps preserve the vehicle's stability and improve its safety, thus avoiding accidents. The technology, which is already available in a few car models, is not yet developed for the heavy trucks applications in this market.
Technical Paper

Methodology for Developing and Validating Air Brake Tubes for Commercial Vehicles

2012-10-02
2012-36-0272
The pneumatic air brake system for heavy commercial trucks is composed by a large number of components, aiming its proper work and compliance with rigorous criteria of vehicular safety. One of those components, present along the whole vehicle, is the air brake tube, ducts which feed valves and reservoirs with compressed air, carrying signals for acting or releasing the brake system. In 2011, due to a lack of butadiene in a global scale, the manufacturing of these tubes was compromised; as this is an important raw material present on the polymer used so far, PA12. This article introduces the methodology of selecting, developing and validating in vehicle an alternative polymer for this application. For this purpose, acceptance criteria have been established through global material specifications, as well as bench tests and vehicular validation requirements.
X