Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

NVH Development of the Ford 2.7L 4V-V6 Turbocharged Engine

2015-06-15
2015-01-2288
A new turbocharged 60° 2.7L 4V-V6 gasoline engine has been developed by Ford Motor Company for both pickup trucks and car applications. This engine was code named “Nano” due to its compact size; it features a 4-valves DOHC valvetrain, a CGI cylinder block, an Aluminum ladder, an integrated exhaust manifold and twin turbochargers. The goal of this engine is to deliver 120HP/L, ULEV70 emission, fuel efficiency improvements and leadership level NVH. This paper describes the upfront design and optimization process used for the NVH development of this engine. It showcases the use of analytical tools used to define the critical design features and discusses the NVH performance relative to competitive benchmarks.
Technical Paper

Idle Vibration Analysis and Evaluation Utilizing a Full-Vehicle NVH Simulator

2015-06-15
2015-01-2334
Realistically experiencing the sound and vibration data through actually listening to and feeling the data in a full-vehicle NVH simulator remarkably aids the understanding of the NVH phenomena and speeds up the decision-making process. In the case of idle vibration, the sound and vibration of the idle condition are perceived simultaneously, and both need to be accurately reproduced simultaneously in a simulated environment in order to be properly evaluated and understood. In this work, a case is examined in which a perceived idle quality of a vehicle is addressed. In this case, two very similar vehicles, with the same powertrain but somewhat different body structures, are compared. One has a lower subjective idle quality rating than the other, despite the vehicles being so similar.
Technical Paper

A Multibody Dynamics Approach to Leaf Spring Simulation for Upfront Analyses

2015-06-15
2015-01-2228
Drivelines used in modern pickup trucks commonly employ universal joints. This type of joint is responsible for second driveshaft order vibrations in the vehicle. Large displacements of the joint connecting the driveline and the rear axle have a detrimental effect on vehicle NVH. As leaf springs are critical energy absorbing elements that connect to the powertrain, they are used to restrain large axle windup angles. One of the most common types of leaf springs in use today is the multi-stage parabolic leaf spring. A simple SAE 3-link approximation is adequate for preliminary studies but it has been found to be inadequate to study axle windup. A vast body of literature exists on modeling leaf springs using nonlinear FEA and multibody simulations. However, these methods require significant amount of component level detail and measured data. As such, these techniques are not applicable for quick sensitivity studies at design conception stage.
Technical Paper

Sound Package Design for Lightweight Vehicles

2015-06-15
2015-01-2343
OEMs are racing to develop lightweight vehicles as government regulations now mandate automakers to nearly double the average fuel economy of new cars and trucks by 2025. Lightweight materials such as aluminum, magnesium and carbon fiber composites are being used as structural members in vehicle body and suspension components. The reduction in weight in structural panels increases noise transmission into the passenger compartment. This poses a great challenge in vehicle sound package development since simply increasing weight in sound package components to reduce interior noise is no longer an option [1]. This paper discusses weight saving approaches to reduce noise level at the sources, noise transmission paths, and transmitted noise into the passenger compartment. Lightweight sound package materials are introduced to treat and reduce airborne noise transmission into multi-material lightweight body structure.
Technical Paper

Sound Package Development for Lightweight Vehicle Design using Statistical Energy Analysis (SEA)

2015-06-15
2015-01-2302
Lightweighting of vehicle panels enclosing vehicle cabin causes NVH degradation since engine, road, and wind noise acoustic sources propagate to the vehicle interior through these panels. In order to reduce this NVH degradation, there is a need to develop new NVH sound package materials and designs for use in lightweight vehicle design. Statistical Energy Analysis (SEA) model can be an effective CAE design tool to develop NVH sound packages for use in lightweight vehicle design. Using SEA can help engineers recover the NVH deficiency created due to sheet metal lightweighting actions. Full vehicle SEA model was developed to evaluate the high frequency NVH performance of “Vehicle A” in the frequency range from 200 Hz to 10 kHz. This correlated SEA model was used for the vehicle sound package optimization studies. Full vehicle level NVH laboratory tests for engine and tire patch noise reduction were also conducted to demonstrate the performance of sound package designs on “Vehicle A”.
Journal Article

Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications

2015-04-14
2015-01-0252
Electric vehicles are receiving considerable attention because they offer a more efficient and sustainable transportation alternative compared to conventional fossil-fuel powered vehicles. Since the battery pack represents the primary energy storage component in an electric vehicle powertrain, it requires accurate monitoring and control. In order to effectively estimate the battery pack critical parameters such as the battery state of charge (SOC), state of health (SOH), and remaining capacity, a high-fidelity battery model is needed as part of a robust SOC estimation strategy. As the battery degrades, model parameters significantly change, and this model needs to account for all operating conditions throughout the battery's lifespan. For effective battery management system design, it is critical that the physical model adapts to parameter changes due to aging.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Journal Article

Power Management of Hybrid Electric Vehicles based on Pareto Optimal Maps

2014-04-01
2014-01-1820
Pareto optimal map concept has been applied to the optimization of the vehicle system control (VSC) strategy for a power-split hybrid electric vehicle (HEV) system. The methodology relies on an inner-loop optimization process to define Pareto maps of the best engine and electric motor/generator operating points given wheel power demand, vehicle speed, and battery power. Selected levels of model fidelity, from simple to very detailed, can be used to generate the Pareto maps. Optimal control is achieved by applying Pontryagin's minimum principle which is based on minimization of the Hamiltonian comprised of the rate of fuel consumption and a co-state variable multiplied by the rate of change of battery SOC. The approach delivers optimal control for lowest fuel consumption over a drive cycle while accounting for all critical vehicle operating constraints, e.g. battery charge balance and power limits, and engine speed and torque limits.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Effects of Fuel Octane Rating and Ethanol Content on Knock, Fuel Economy, and CO2 for a Turbocharged DI Engine

2014-04-01
2014-01-1228
Engine dynamometer testing was performed comparing fuels having different octane ratings and ethanol content in a Ford 3.5L direct injection turbocharged (EcoBoost) engine at three compression ratios (CRs). The fuels included midlevel ethanol “splash blend” and “octane-matched blend” fuels, E10-98RON (U.S. premium), and E85-108RON. For the splash blends, denatured ethanol was added to E10-91RON, which resulted in E20-96RON and E30-101 RON. For the octane-matched blends, gasoline blendstocks were formulated to maintain constant RON and MON for E10, E20, and E30. The match blend E20-91RON and E30-91RON showed no knock benefit compared to the baseline E10-91RON fuel. However, the splash blend E20-96RON and E10-98RON enabled 11.9:1 CR with similar knock performance to E10-91RON at 10:1 CR. The splash blend E30-101RON enabled 13:1 CR with better knock performance than E10-91RON at 10:1 CR. As expected, E85-108RON exhibited dramatically better knock performance than E30-101RON.
Technical Paper

Development of Battery Hardware-In-the-Loop System Implemented with Reduced-Order Electrochemistry Li-Ion Battery Models

2014-04-01
2014-01-1858
Aggressive battery usage profiles in electrified vehicle applications require extensive efforts in developing battery management strategy and system design determination to guarantee safe operation under every real-world driving conditions. Experiment based approaches have been widely used for battery system development, but higher costs and longer testing time restrain the number of test cases in the product development process. Battery experiments tend to be conservative to avoid inherent risks of battery failure modes under aggressive battery operation close to the capability limits. Battery Hardware-In-the-Loop (HIL) is an alternative way to overcome the limitations of experiment-based approaches. Battery models in the HIL should provide real-time computation capability and high (at least acceptable) prediction accuracy. Equivalent circuit model (ECM) based HILs have been used owing to their relatively good balance between computational time and prediction accuracy.
Technical Paper

Powersplit HEV Performance Simulation Capability

2014-04-01
2014-01-1813
A new performance simulation capability has been developed for powersplit HEVs to enable analytical assessment of new engine technologies in the context of HEV system operation and to analyze/understand important system dynamics and control interactions affecting HEV performance. This new capability allows direct simulation with closed-loop controls and the driver, is compatible with Ford standard HEV system simulation capabilities and enables simulation with multiple levels of model fidelity and feature content across the vehicle system. The combined plant Vehicle Model Architecture (VMA) in Simulink was used for the infrastructure. The simulation capability includes a Dymola model of the powersplit transaxle, a Vehicle System Control (VSC) model implemented in Simulink, a high fidelity 2L Atkinson GT-Power engine model, and a simplified representation of the engine controls in Simulink.
Technical Paper

Investigation of Climate Control Power Consumption in DTE Estimation for Electric Vehicles

2014-04-01
2014-01-0713
Distance to empty (DTE) estimation is an important factor to electric vehicle (EV) applications due to its limited driving range. The DTE calculation is based on available energy of the battery and power usage by the powertrain components (e.g. electric motor) and climate control components (e.g. PTC heater and electric AC compressor). The conventional way of estimating the DTE is to treat the power consumed by the climate control system the same as the power by the powertrain for either instantaneous or rolling average estimation. The analysis in this study shows that the power consumption by the climate control system should be estimated based on the current ambient conditions and driver's input instead of using the recorded data from the past driving cycles. The climate control should also be considered separately from the powertrain in power usage rolling average calculation, which results in improvements in DTE estimation especially for extreme hot and cold conditions.
Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Correlation Test: Guaporé Mountain Test vs Proving Ground

2013-05-15
2013-36-0038
Downhill tests are widely used as a method of evaluation, development and validation of braking efficiency, friction pair durability, braking balance, as well as fade characteristics and recovery of friction material properties. This test procedure is used for both: passenger vehicles and light & heavy commercial vehicles. The energy levels in the brake system are higher on commercial vehicles and the thermal characteristics much more critical. Added to the fact that such tests are conducted on public highways, it has an intrinsic security risk for both the vehicle tested and all others around. Until a few years ago, it was still feasible to conduct tests downhill on different routes keeping a high security level. Given an increasing traffic on highways, where the test is currently carried out, a need to create a similar downhill procedure (called Guaporé Mountain Test) within a Proving Ground under controlled conditions has been noticed.
Technical Paper

Methodology for Determining the Process of Riveting Brake Linings for Heavy Commercial Vehicles

2013-05-15
2013-36-0029
During the development of a new friction material, besides the interface between lining/drum is also fundamental take in account all aspects involving the attachment of the linings on the brake shoes. This paper presents an optimization approach to the development and manufacturing parameters of brake linings, applied on medium and heavy duty commercial vehicles, aiming to assure the correct specification of the riveted joint clamp forces. These evaluations were conducted based on the quality tools documents and the theoretical aspects of the product usage as well as the modeling of key elements of the referred mechanism throughout various known applications. A calculation methodology was developed based on brake geometry, its generated forces and braking reactions required for each vehicle family.
Technical Paper

System Simulation and Analysis of EPA 5-Cycle Fuel Economy for Powersplit Hybrid Electric Vehicles

2013-04-08
2013-01-1456
To better reflect real world driving conditions, the EPA 5-Cycle Fuel Economy method encompasses high vehicle speeds, aggressive vehicle accelerations, climate control system use and cold temperature conditions in addition to the previously used standard City and Highway drive cycles in the estimation of vehicle fuel economy. A standard Powersplit Hybrid Electric Vehicle (HEV) system simulation environment has long been established and widely used within Ford to project fuel economy for the standard EPA City and Highway cycles. Direct modeling and simulation of the complete 5-Cycle fuel economy test set for HEV's presents significant new challenges especially with respect to modeling vehicle thermal management system and interactions with HEV features and system controls. It also requires a structured, systematic approach to validate the key elements of the system models and complete vehicle system simulations.
Technical Paper

Engine Control Unit Modeling with Engine Feature C Code for HEV Applications

2013-04-08
2013-01-1451
Engine control unit (ECU) modeling using engine feature C code is an increasingly important part of new vehicle analysis and development tools. The application areas of feature based ECU models are numerous: a) cold vehicle fuel economy (FE) prediction required for recently introduced 5-cycle certification; b) vehicle thermal modeling; c) evaporative (purge) systems design; d) model-in-the-loop/software-in-the-loop (MIL/SIL) vehicle control development and calibration. The modeling method presented in the paper embeds production C-code directly into Simulink at a feature level using an S-Function wrapper. A collection of features critical to accurate engine behavior prediction are compiled individually and integrated according to the newly developed Engine Control Model Architecture (ECMA). Custom MATLAB script based tools enable efficient model construction.
Technical Paper

How to Make Your Fleet More Sustainable and Save Money: The Ford Fleet Purchase Planner

2013-04-08
2013-01-0506
Ford's portfolio approach to sustainable mobility offers a large range of fuel-efficient engines and alternative-fuel vehicles - including EcoBoost®, hybrid, plug-in hybrid, flexible fuel, battery-electric, B20 biodiesel and compressed natural gas or liquefied petroleum gas (CNG/LPG) vehicles. The Ford Fleet Purchase Planner has been developed to assist fleet customers in comparing these alternatives and understanding which vehicles offer the optimal mix to achieve CO₂ emission reductions while balancing corporate financial goals. Vehicle fleets for large corporations can have thousands of vehicles that are replaced on a timescale of months to years. We present the three main components of the Fleet Purchase Planner (patent pending) that provide fleet customers the lowest cost solution to achieving their sustainability goals: the Vehicle Emissions & Fuel Cost Calculator, the Fleet CO₂ Emissions Footprint Status Calculator, and the Purchase Recommender.
X