Refine Your Search

Topic

Author

Search Results

Technical Paper

Recent Advances in Swelling Resistance of Graphene-Based Rubber Compounds

2020-04-14
2020-01-0769
Recently, graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. This review will focus on the latest studies and recent progress in the swelling resistance of rubber compounds due to the addition of graphene and its derivatives. This work will present the state-of-the-art in this subject area and will highlight the advantages and current limitations of the use of graphene for potential future researches.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

A Review of Modal Choice Models: Case Study for São Paulo

2017-11-07
2017-36-0279
The world urbanization is growing rapidly, bringing many challenges for people to move in dense metropolitan regions. Public transportation is not able to attend the whole demand, and individual transportation modes are struggling with traffic congestion and stringent regulations to reduce its attractiveness, such as the license plate restriction in São Paulo. On the other hand, enablers like smartphones mass penetration, GPS connected services and shared economy have opened space to a whole new range of possible solutions to improve people perception on urban mobility. This work aims to evaluate the modal choice behavior models and understand the success factor of current mobility solutions in the city of São Paulo. The data available through origin/destination researches will be used to validate the models used in this work.
Technical Paper

Brake System Regulations and Standards Review and Comparison Focused on Europe, NA and SA Markets

2017-09-17
2017-01-2534
Considering that the most part of commercial vehicles are equipped with air brakes it is very important assure specific technical requirements for air brake system and its components. In addition, the effects of brake system failure are more critical for commercial vehicles which require more attention on their requirements details. Historically, the development of air brakes technology started on North America and Europe and consequently two strong and distinct resolutions were structured: FMVSS 121 and ECE R.13, respectively. For passenger cars were developed the ECER.13H to harmonize North American and European resolutions. However, for commercial vehicles regional applications, culture and implementation time must be considered. These commercial vehicles peculiarities must be understood and their specific requirements harmonized to attend the global marketing growth.
Journal Article

Modeling of Phase Change within a Wax Element Thermostat Embedded in an Automotive Cooling System

2017-03-28
2017-01-0131
In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation.
Technical Paper

Common Mesh Approach for Automotive Vehicle CAE Analysis

2017-03-28
2017-01-0375
Over the past decades, Computer Aided Engineering (CAE) based assessment of vehicle durability, NVH (Noise, Vibration and Harshness) and crash performance has become very essential in vehicle development and verification process. CAE activity is often organized as different groups based on the specific attributes (durability, NVH and crash). Main reasons for this are the expertise required and the difference in the finite element software technologies (explicit vs implicit) used to perform and interpret various CAE analyses in each of the attributes. This leads to individual attribute team creating its own model of the vehicle and there is not much exchange of the CAE models between the attribute teams. Different model requirements for each attribute make model sharing challenging. However, CAE analyses for all attributes start with common CAD and follow the same sub-process in vehicle development cycle.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Technical Paper

Characterization of 6XXX Series Aluminum Extrusions Using Digital Image Correlation (DIC) technique

2017-03-28
2017-01-0316
Aluminum extrusions are used in the automotive industry for body structure applications requiring cross-section design flexibility, high section stiffness, and high strength. Heat-treatable 6xxx series extrusion alloys have typically been used in automotive due to commercial availability, competitive cost, high strength, and impact performance. This paper presents a characterization study of mechanical properties of 6xxx series aluminum extrusions using digital image correlation (DIC). DIC has been used to capture spatial strain distribution and its evolution in time during material deformation. The materials of study were seamless and structural 6061 and 6082 extrusions. The alloys have been tensile tested using an MTS load frame with a dual optical camera system to capture the stereoscopic digital images. Notable results include the differing anisotropy of seamless and structural extrusions, as well as the influence of artificial aging on anisotropy.
Technical Paper

Fatigue Life Prediction of Injection Molding Tool

2017-03-28
2017-01-0340
Injection molding tools are expensive and the fatigue failure during production would result in very costly rework on the tool and downtime. Currently, mold designs are mostly based on expert experience without a careful stress analysis and the mold tool life cycle relies largely on rough estimates. The industry state of the art applies averaged temperature change and peak pressure load on the mold tool. The static analysis is then performed. Mold temperature history and thermal shock are not considered in the durability analysis. In this paper, a transient thermal analysis of the tool is performed in conjunction with the injection molding process simulation. The spatial and temporal variation of temperature, pressure and clamping forces are exported from Moldflow simulation. These histories of temperature and pressure are converted to appropriate loading curves and mapped into Abaqus FEA model.
Technical Paper

Approaches to Determining Beneficial Use of Simulink and UML in Automotive Embedded Software Systems

2017-03-28
2017-01-0008
Simulink is a very successful and popular method for modelling and auto-coding embedded automotive features, functions and algorithms. Due to its history of success, university feeder programs, and large third party tool support, it has, in some cases, been applied to areas of the software system where other methods, principles and strategies may provide better options for the software and systems engineers and architects. This paper provides approaches to determine when best to apply UML and when best to apply Simulink to a typical automotive feature. Object oriented software design patterns as well as general guidelines are provided to help in this effort. This paper's intent is not to suggest a replacement for Simulink but to provide the software architects and designers additional options when decomposing high level requirements into reusable software components.
Technical Paper

Selective Catalytic Reduction Control with Multiple Injectors

2017-03-28
2017-01-0943
Over the past decade urea-based selective catalytic reduction (SCR) has become a leading aftertreatment solution to meet increasingly stringent Nitrogen oxide (NOx) emissions requirements in diesel powertrains. A common trend seen in modern SCR systems is the use of "split-brick" configurations where two SCR catalysts are placed in thermally distinct regions of the aftertreatment. One catalyst is close-coupled to the engine for fast light-off and another catalyst is positioned under-floor to improve performance at high space velocities. Typically, a single injector is located upstream of the first catalyst to provide the reductant necessary for efficient NOx reduction. This paper explores the potential benefit, in terms of improved NOx reduction, control of NH3 slip or reduced reductant consumption, of having independently actuated injectors in front of each catalyst.
Technical Paper

Estimation of the Effects of Auxiliary Electrical Loads on Hybrid Electric Vehicle Fuel Economy

2017-03-28
2017-01-1155
In recent years the fuel efficiency of modern hybrid electric vehicle (HEV) powertrains has progressed to a point where low voltage auxiliary electrical system loads have a pronounced impact on fuel economy (FE). While improving the energy consumption of an individual component may result in minor improvements, the collective optimization of such loads across a complete vehicle system can result in meaningful FE gains. Traditional methods using chassis dynamometer testing alone to quantify the impact of a specific auxiliary load can lead to issues where signal state changes are too small for accurate detection. This presents difficulties in accurately predicting the influence of such loads on FE of next-generation electrified vehicles under development. This paper describes a newly developed method where dynamometer test results are combined with computer simulation analyses to create a practical technique for assessing the impact of small changes in auxiliary load energy consumption.
Technical Paper

Characterization of Crankcase Pressure Variation during the Engine Cycle of an Internal Combustion Engine

2017-03-28
2017-01-1088
High frequency variations in crankcase pressure have been observed in Inline-four cylinder (I4) engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through a review and explanation of the physics related to engine operation followed by comparison to measured vehicle data, the relationship between crankcase volume throughout the engine cycle and the observed pressure fluctuations. It is demonstrated that for a known or proposed engine design, through knowledge of the key engine design parameters, the frequency and amplitude of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems.
Journal Article

Stress-Corrosion Cracking Evaluation of Hot-Stamped AA7075-T6 B-Pillars

2017-03-28
2017-01-1271
High-strength aluminum alloys such as 7075 can be formed using advanced manufacturing methods such as hot stamping. Hot stamping utilizes an elevated temperature blank and the high pressure stamping contact of the forming die to simultaneously quench and form the sheet. However, changes in the thermal history induced by hot stamping may increase this alloy’s stress corrosion cracking (SCC) susceptibility, a common corrosion concern of 7000 series alloys. This work applied the breaking load method for SCC evaluation of hot stamped AA7075-T6 B-pillar panels that had been artificially aged by two different artificial aging practices (one-step and two-step). The breaking load strength of the specimens provided quantitative data that was used to compare the effects of tensile load, duration, alloy, and heat treatment on SCC behavior.
Technical Paper

A Review of Human Physiological, Psychological & Human Biomechanical Factors on Perceived Thermal Comfort of Automotive Seats.

2017-03-28
2017-01-1388
Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
Journal Article

Multibody Dynamics Cosimulation for Vehicle NVH Response Predictions

2017-03-28
2017-01-1054
At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
Journal Article

Requirement Modeling of Pro Trailer Backup Assist™

2017-03-28
2017-01-0002
Driver assistance features are increasingly dependent upon system architectures that distribute and share responsibilities across various function-based ECUs to minimize cost and redundancy while maximizing engineering efficiency. Clear and accurate system requirements are critical to success, and a robust methodology for validating and testing requirements is essential. Distributed systems are highly sensitive to requirement ambiguity and inaccuracy as they are designed on the assumptions of predictable logical behavior of each functional component. Requirement ambiguity drives variance in implementations which results in system incompatibilities. Errors in requirements lead to faulty implementations that fail not just the component test but also hinder the testing of the entire system of components.
Technical Paper

Evolution of Engine Air Induction System Hydrocarbon Traps

2017-03-28
2017-01-1014
Engine air induction systems hydrocarbon trap (HC trap) designs to limit evaporative fuel emissions, have evolved over time. This paper discusses a range of HC traps that have evolved in engine air induction systems. (AIS) The early zeolite flow through HC trap utilized an exhaust catalyst technology internal stainless steel furnace brazed substrate coated with zeolite media. This HC trap was installed in the AIS clean air tube. This design was heavy, complicated, and expensive but met the urgency of the implementation of the new evaporative emissions regulation. The latest Ford Motor Company HC trap is a simple plastic tray containing activated carbon with breathable non-woven polyester cover. This design has been made common across multiple vehicle lines with planned production annual volume in the millions. The cost of the latest HC trap bypass design is approximately 5% of the original stainless steel zeolite flow through HC trap.
Technical Paper

Methods to Improve the Surface Quality of Microcellular Injection Molded Parts - A Review

2016-10-25
2016-36-0224
The microcellular foam injection molding process is being widely applied by the thermoplastics industry. This process consists in a melted polymer injection mixed with a processing solvent, that is an inert gas in the supercritical state, usually CO2 or N2 producing a microcellular foam. This technique offers many advantages such as weight reduction, dimensional uniformization and less warpage. Besides that, it offers a satisfactory property like acoustic and thermal insulation. On the other hand, the parts from this process have an inferior mechanical property like ductility and toughness if compared with solid injection molded parts. Nevertheless, the main issue for this process is the poor appearance quality. This paper presents a review of some existing methods for surface quality improvement as Co-injection process, where a skin is injected over the microcellular part, and Heat & Cool that consists in a control of mold temperature.
Technical Paper

Lightweight Materials for Automotive Applications: A Review

2015-09-22
2015-36-0219
Today, in order to optimize the resources usage and reduce the air pollution, the automobile industry is facing new challenges, with the necessity to improve engines fuel economy, enhance vehicles autonomy and reduce the CO2 emission. One of the solution, which is being much researched, is the car components weight reduction. There is a range of new materials that have been developed to attend the new weight standards. Together with lightweight these materials must also deliver acceptable mechanical properties, easy to manufacture and to assembly capability, good appearance, high durability, good cost-benefit relation and in some cases also acceptable impact energy absorption. This paper presents a review of some of the lightweight materials that are being applied in automobiles, like Carbon Fiber, Aluminum Alloy, Magnesium Alloy, Hybrid Material and Polymer Composites.
X