Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Measurement Techniques for Angular Velocity and Acceleration in an impact Environment

1997-02-24
970575
The University of Virginia is investigating the use of a magnetohydrodynamic (MHD) angular rate sensor to measure head angular acceleration in impact testing. Output from the sensor, which measures angular velocity, must be differentiated to produce angular acceleration. As a precursor to their use in actual testing, a torsional pendulum was developed to analyze an MHD sensor's effectiveness in operating under impact conditions. Differentiated and digitally filtered sensor data provided a good match with the vibratory response of the pendulum for various magnitudes of angular acceleration. Subsequent head drop tests verified that MHD sensors are suitable for measuring head angular acceleration in impact testing.
Technical Paper

Development of a Door Test Facility for Implementing the Door Component Test Methodology

1997-02-24
970568
This paper describes the development of an automated Door Test Facility for implementing the Door Component Test Methodology for side impact analysis. The automated targeting and loading of the door inner/trim panels with Side Impact Dummy (SID) ribcage, pelvis, and leg rams will greatly improve its test-to-test repeatability and expedite door/trim/armrest development/evaluation for verification with the dynamic side impact test of FMVSS 214 (Occupant Side Impact Protection). This test facility, which is capable of evaluating up to four (4) doors per day, provides a quick evaluation of door systems. The results generated from this test methodology provide accurate input data necessary for a MADYMO Side Impact Simulation Model. The test procedure and simulation results will be discussed.
Technical Paper

An Evaluation of Various Viscous Criterion Computational Algorithms

1993-03-01
930100
The viscous criterion (V*C) has been proposed by biomechanics researchers as a generic biomechanical index for potential soft tissue injury. It is defined by the product of the velocity of deformation and the instantaneous compression of torso and abdomen. This criterion requires calculation and differentiation of measured torso/abdomen compression data. Various computational algorithms for calculating viscous criterion are reviewed and evaluated in this paper. These include methods developed by Wayne State University (WSU), NHTSA (DOT) and Ford. An evaluation has been conducted considering the accuracy of these algorithms with both theoretical and experimental data from dummy rib compressions obtained during a crash test. Based on these results, it is found that: V*C results depend on the scheme used in the computation process, the sampling rate and filtering of original raw data. The NHTSA method yields the lowest V*C value.
X