Refine Your Search

Topic

Author

Search Results

Technical Paper

Improving Cruise Control Efficiency through Speed Flexibility & On-Board Data

2023-10-31
2023-01-1606
In recent decades, significant technological advances have made cruise control systems safer, more automated, and available in more driving scenarios. However, comparatively little progress has been made in optimizing vehicle efficiency while in cruise control. In this paper, two distinct strategies are proposed to deliver efficiency benefits in cruise control by leveraging flexibility around the driver’s requested set speed, and road information that is available on-board in many new vehicles. In today’s cruise control systems, substantial energy is wasted by rigidly controlling to a single set speed regardless of the terrain or road conditions. Introducing even a small allowable “error band” around the set speed can allow the propulsion system to operate in a pseudo-steady state manner across most terrain. As long as the vehicle can remain in the allowed speed window, it can maintain a roughly constant load, traveling slower up hills and faster down hills.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

Better performance in fine-grain steel for transmission

2023-02-10
2022-36-0033
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening.
Technical Paper

Robustness of RTV (Room Temperature Vulcanized Rubber) Joint Design in Electric Vehicles

2022-10-05
2022-28-0082
As the automobile industry is moving towards Electrical vehicles, it becomes very important to have low cost and robust solution to seal all the internal Battery sub systems. It’s a known fact that various IC engine Vehicles are already using Room temperature vulcanized rubber (RTV) for many metal and composite sealing interfaces. Nevertheless, it always needs a good structural design to have good sealing performance. For designing a robust RTV joint for composite structures, it becomes important to have standard RTV chamfers. Sometimes even with these standards, it becomes very costly in having warranty issues when we have weak structure around RTV chamfers. Any joint structure involves multiple design parameters which might impact the sealing performance. Some of the joint structural parameters should be well designed at the early phase of product development cycle, which otherwise will later add lot of cost in modifying the product with its integrated components.
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Journal Article

Balancing Hydraulic Flow and Fuel Injection Parameters for Low-Emission and High-Efficiency Automotive Diesel Engines

2019-09-09
2019-24-0111
The introduction of new light-duty vehicle emission limits to comply under real driving conditions (RDE) is pushing the diesel engine manufacturers to identify and improve the technologies and strategies for further emission reduction. The latest technology advancements on the after-treatment systems have permitted to achieve very low emission conformity factors over the RDE, and therefore, the biggest challenge of the diesel engine development is maintaining its competitiveness in the trade-off “CO2-system cost” in comparison to other propulsion systems. In this regard, diesel engines can continue to play an important role, in the short-medium term, to enable cost-effective compliance of CO2-fleet emission targets, either in conventional or hybrid propulsion systems configuration. This is especially true for large-size cars, SUVs and light commercial vehicles.
Technical Paper

Sound Analysis Method for Warble Noise in Electric Actuators

2019-06-05
2019-01-1521
Multiple automotive applications exist for small electric motors that are activated by vehicle occupants for various functions such as window lifts and seat adjusters. For such a motor to be described as high quality, not only should the sound it produces be low in amplitude, but it also needs to be free from pulsations and variations that might occur during its (otherwise) steady-state operation. If a motor’s sound contains pulsations or variations between 2 and 8 cycles per second, the variation is described as warble. To establish performance targets for warble noise at both the vehicle and component level a way to measure and quantify the warble noise must be established. Building on existing sound quality metrics such as loudness and pitch variation, a method is established by which processed sound data is put through a secondary operation of Fourier analysis.
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Technical Paper

A Qualitative and Quantitative Aerodynamic Study of a Rotating Wheel inside a Simplified Vehicle Body and Wheel Liner Cavity

2019-04-02
2019-01-0658
As automotive OEMs (Original Equipment Manufacturer) struggle to reach a balance between Design and Performance, environmental legislations continues to demand more rapid gains in vehicle efficiency. As a result, more attention is being given to the contributions of both tire and wheels. Not only tire rolling resistance, but also tire and wheel aerodynamics are being shown to be contributors to overall efficiency. To date, many studies have been done to correlate CFD simulations of rotating wheels both in open and closed wheeled environments to windtunnel results. Whereas this ensures proper predictive capabilities, little focus has been given to thoroughly explaining the physics that govern this complex environment. This study seeks to exhaustively investigate the complex interactions between the ground, body, and a rotating tire/wheel.
Technical Paper

Effectiveness of Workload-Based Drowsy Driving Countermeasures

2019-04-02
2019-01-1228
This study evaluated the effectiveness of alternative workload-based interventions intended to restore driver alertness following drowsy episodes. Unlike traditional drowsy driving studies, this experiment did not target sleep-deprived individuals, but rather studied normally rested drivers under the assumption that low-workload environments could trigger drowsy driving episodes. The study served as a proof of concept for varying the nature and onset of countermeasure interventions intended to disrupt the drowsiness cycle. Interventions to combat drowsiness attempted to target driver workload, either physical or cognitive, and included two primary treatment conditions: 1) physical workload to increase driver steering demands and 2) trivia-based interactive games to mentally challenge drivers. A benchmark comparison condition using music was also investigated to contrast the relative influence of workload-based interventions with passive listening to musical arrangements.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Parametric Optimization of Planetary Carrier for Durability

2019-01-09
2019-26-0049
Planetary gear set is one of the most commonly used gear systems in automotive industry as they cater to high power density requirements. A simple planetary gear set consists of a sun gear, ring gear, planets and carrier which houses planet gears. Efficiency of a transmission is dependent upon performance of gear sets involved in power transfer to a great extent. Structural rigidity of a planetary carrier is critical in a planetary gear set as its deflection may alter the load distribution of gears in mesh causing durability and noise issues. Limited studies exist based on geometrical parameters of a carrier which would help a designer in selecting the dimensions at an early stage. In this study, an end to end automated FEA process based on DOE and optimization in Isight is developed. The method incorporates a workflow allowing for an update of carrier geometry, FE model setup, analysis job submission and post-processing of results.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Journal Article

Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology

2017-03-28
2017-01-1623
Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Technical Paper

Critical Plane Analysis of Rubber Bushing Durability under Road Loads

2016-04-05
2016-01-0393
We demonstrate here an accounting of damage accrual under road loads for a filled natural rubber bushing. The accounting is useful to developers who wish to avoid the typical risks in development programs: either the risk of premature failure, or of costly overdesign. The accounting begins with characterization of the elastomer to quantify governing behaviors: stress-strain response, fatigue crack growth rate, crack precursor size, and strain crystallization. Finite Element Analysis is used to construct a nonlinear mapping between loads and strain components within each element. Multiaxial, variable amplitude strain histories are computed from road loads. Damage accrues in this reckoning via the growth of cracks. Crack growth is calculated via integration of a rate law from an initial size to a size marking end-of-life.
Technical Paper

An Approach of the Engine Cylinder Block Material

2013-10-07
2013-36-0113
The increasing demand for energy savings in cars of high production volume, especially those classified as emerging market vehicles, has led the automotive industry to focus on several strategies to achieve higher efficiency levels from their systems and components. One of the most diffuse initiatives is reducing weight through the application of the so-called light alloys. An engine cylinder block can contribute nearly two percent of the vehicle's total mass. Special attention and soon repercussion are given when someone decides to apply a light alloy such as the aluminum to this component. Nonetheless, it is known that peculiarities in terms of physical, chemical and mechanical properties, due to the material nature, associated with regional market characteristics make the initial feasibility analysis study definitely one of the most important stages for the material choice decision.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

Innovation Flow and Metrics Essentials

2011-10-04
2011-36-0147
The innovation term has been so widely misused that the confusion observed among the companies trying to get themselves into the innovation realm is a common and natural consequence. The lack of understanding of the innovation dynamics, flow and metrics generally culminate in a non-well-thought implementation of innovation processes and policies that are usually tragic in the short term. The most common consequences are the loss of credibility of the innovation process in general among leaders and employees, and the loss of credibility of the company as an innovative company among suppliers, partners and customers, causing these companies to abandon this powerful tool and, as consequence, to limit their capabilities to compete in the future. In order to prevent this from happening, companies that were not built upon innovation will need to grow capability and change cultural priorities to match the demands of the innovation process.
X