Refine Your Search

Topic

Author

Search Results

Technical Paper

Dry Dual Clutch Transmission (DCT) Thermal Model

2015-04-14
2015-01-1144
Dual Clutch Transmissions (DCT) for passenger cars are being developed by OEMs and suppliers. The driving force is the improvement in fuel economy available from manual transmissions together with the comfort of automatic transmissions. A dry clutch system (dDCT) is currently the subject of research, development, and production implementation. One of the key issues in the development of a dDCT is clutch durability. In dry clutches with current linings, above a critical temperature, the friction system starts to suffer permanent damage. In addition, the clutch friction characteristics are a function of the clutch interface temperature. Because a reliable, low-cost temperature sensor is not available for this application, the clutch control engineers rely on a good thermal model to estimate the temperature of the clutches. A thermal model was developed for dry dual clutch transmissions to predict operating temperature of both pressure and center plates during all maneuvers.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Technical Paper

Optimization of High-Volume Warm Forming for Lightweight Sheet

2013-04-08
2013-01-1170
Traditional warm forming of aluminum refers to sheet forming in the temperature range of 200°C to 350°C using heated, matched die sets similar to conventional stamping. While the benefits of this process can include design freedom, improved dimensional capability and potentially reduced cycle times, the process is complex and requires expensive, heated dies. The objective of this work was to develop a warm forming process that both retains the benefits of traditional warm forming while allowing for the use of lower-cost tooling. Enhanced formability characteristics of aluminum sheet have been observed when there is a prescribed temperature difference between the die and the sheet; often referred to as a non-isothermal condition. This work, which was supported by the USCAR-AMD initiative, demonstrated the benefits of the non-isothermal warm forming approach on a full-scale door inner panel. Finite element analysis was used to guide the design of the die face and blank shape.
Technical Paper

An Experimental and Numerical Study of the Microstructural and Mechanical Properties of an Extruded Magnesium Alloy at 450 °C and Varied Strain Rates

2013-04-08
2013-01-0976
An extruded Mg-Al-Mn (AM30) magnesium alloy was subjected to uniaxial compression along the extrusion direction (ED) and the extrusion radial direction (RaD) at 450 °C and different strain rates. The microstructure and texture of the AM30 alloy under different deformation conditions were examined. Texture evolution was characterized by electron backscatter diffraction (EBSD). The activity of different deformation modes including twinning were simulated using the visco-plastic self-consistent (VPSC) and the simplistic Sachs polycrystal plasticity models. The results show that the microstructure and the mechanical property of the Mg alloy strongly depend on the strain rate, with twinning activated at strain rates >0.5 s−1. Dynamic recrystallization and twinning interacted with each other and affected the final microstructure and mechanical property of the magnesium alloy.
Technical Paper

Fuel Economy Impact of Grille Opening and Engine Cooling Fan Power on a Mid-Size Sedan

2013-04-08
2013-01-0857
This paper investigates changes in fuel economy of a mid-size sedan at various engine cooling fan power levels and front grille opening areas. A full vehicle model was built using MATLAB Simulink to calculate the fuel economy (MPG). The model utilized inputs from aerodynamic wind tunnel testing as well as FTP and MVEG dynamometer tests results. Simulation and testing was carried out at three front opening areas and three engine cooling fan power levels. The results provide a guideline for optimizing the front grille opening vs. engine cooling fan power combination at various driving conditions.
Technical Paper

A Dual Clutch Torque Converter for Dual Input Shaft Transmissions

2013-04-08
2013-01-0232
This paper presents an alternative launch device for layshaft dual clutch transmissions (DCT's). The launch device incorporates a hydrodynamic torque converter, a lockup clutch with controlled slip capability and two wet multi-plate clutches to engage the input shafts of the transmission. The device is intended to overcome the deficiencies associated with using conventional dry or wet launch clutches in DCT's, such as limited torque capacity at vehicle launch, clutch thermal capacity and cooling, launch shudder, lubricant quality and requirement for interval oil changes. The alternative device enhances drive quality and performance at vehicle launch and adds the capability of controlled capacity slip to attenuate gear rattle without early downshifting. Parasitic torque loss will increase but is shown not to drastically influence fuel consumption compared to a dry clutch system, however synchronizer engagement can become a concern at cold operating temperatures.
Journal Article

Calculation of Heating Value for Diesel Fuels Containing Biodiesel

2013-04-08
2013-01-1139
Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the energy content. The energy content, or heating value, is an important property of motor fuel, since it directly affects the vehicle fuel economy. While the energy content can be measured by combustion of the fuel in a bomb calorimeter, this analytical laboratory testing is time consuming and expensive.
Technical Paper

ASIL Decomposition: The Good, the Bad, and the Ugly

2013-04-08
2013-01-0195
ASIL decomposition is a method described in the ISO 26262 standard for the assignment of ASILs to redundant requirements. Although ASIL decomposition appears to have similar intent to the hardware fault tolerance concept of IEC 61508-2, ASIL decomposition is not intended to reduce ASIL assignments to hardware elements for random hardware failures, but instead focuses on functions and requirements in the context of systematic failures. Based on our participation in the development of the standard, the method has been applied in different ways in practice, not all of which are fully consistent with the intent of the standard. Two potential reasons that may result in the use of “modified” ASIL algebra include the need of OEMs to partition a system and specify subsystem requirements to suppliers and the need for designers to construct systems bottom up.
Journal Article

Co-Simulation of Multiple Software Packages for Model Based Control Development and Full Vehicle System Evaluation

2012-04-16
2012-01-0951
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Technical Paper

Electrically Heated Catalysts for Cold-Start Emissions in Diesel Aftertreatment

2012-04-16
2012-01-1092
With a tighter regulatory environment, reduction of hydrocarbon (HC) and NOx emissions during cold-start has emerged as a major challenge for diesel engines. In the complex diesel aftertreatment system, more than 90% of engine-out NOx is removed in the underfloor SCR. However, the combination of low temperature exhaust and heat sink over DOC delays the SCR light-off during the cold start. In fact, the first 350 seconds during the cold light-duty FTP75 cycle contribute more than 50% of the total NOx tailpipe emission due to the low SCR temperature. For a fast SCR light-off, electrically heated catalyst (EHC) technology has been suggested to be an effective solution as a rapid warm-up strategy. In this work, the EHC, placed in front of DOC, utilizes both electrical power and hydrocarbon fuel. The smart energy management during the cold-start was crucial to optimize the EHC integrated aftertreatment system.
Technical Paper

Development of a Standard Spin Loss Test Procedure for 4WD Transfer Cases

2012-04-16
2012-01-0306
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of parasitic losses on all driveline components is required. A standardized comparison procedure enables manufacturers and suppliers to measure component losses consistently, in addition to offering a reliable process to assess enablers for efficiency improvements. This paper reviews the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This procedure was validated for repeatability considering variations in soak time, temperature measurement positions on the transfer case, and test operating conditions. Additional assessments of spin loss at low ambient temperatures, and the effect of component break-in on spin loss were also conducted.
Technical Paper

Utilizing Finite Element Tools to Model Objective Seat Comfort Results

2012-04-16
2012-01-0074
The comfort assessment of seats in the automotive industry has historically been accomplished by subjective ratings. This approach is expensive and time consuming since it involves multiple prototype seats and numerous people in supporting processes. In order to create a more efficient and robust method, objective metrics must be developed and utilized to establish measurable boundaries for seat performance. Objective measurements already widely accepted, such as IFD (Indentation Force Deflection) or CFD (Compression Force Deflection) [1], have significant shortcomings in defining seat comfort. The most obvious deficiency of these component level tests is that they only deal with a seats' foam rather than the system response. Consequently, these tests fail to take into account significant factors that affect seat comfort such as trim, suspension, attachments and other components.
Technical Paper

Evaluation of Force-Based Spot Weld Modeling in Quasi-Static Finite Element Analysis

2012-04-16
2012-01-0537
Evaluating spot weld separation is one of the most challenging tasks in a quasi-static simulation. There are several factors that exist in modeling welds analytically that can influence correlation to physical test. This paper presents 4 specific factors: spot weld representation, weld thickness, weld strength, and metal forming effects around spot welds. There are many ways in which a spot weld can be modeled within an FEA model from mesh independent beams to mesh dependent hex clusters. While each modeling technique comes with its unique sets of advantages and disadvantages, a method is chosen to best balance correlation, model setup timing and computation time. Dependent on the way the thickness of the spot weld is represented, artificial moments can be induced which misrepresents structural behavior. The assigned yield strength of the spot weld influences the behavior of the joint.
Technical Paper

A Multidisciplinary Numerical Modeling Tool Integrating CFD and Thermal System Simulation for Automotive HVAC System Design

2012-04-16
2012-01-0644
A multidisciplinary toolset integrating ANSYS FLUENT CFD solver and GM in-house thermal system design tool - e-Thermal has been developed to design automotive HVAC systems. This toolset utilizes COM software interface standard of MS Windows for inter-process communication at simulation run-time to synchronize the two applications and to exchange data. In this report, first, the implementation of this fully transient, coupled method between FLUENT CFD and e-Thermal is introduced. We then apply this integrated tool to simulate a transient A/C operating cycle including hot-soak and cool-down of a cabin. The coupled simulation consists of an A/C and an Air-Handling (HVAC module) system models, and a cabin CFD model. It demonstrates that the coupled method can simulate fully transient HVAC system operations in a vehicle.
Technical Paper

Critical Success Factors of Lean Manufacturing Implementation in Automotive Industry in China

2012-04-16
2012-01-0516
Purpose - This research aimed to investigate the process of lean manufacturing implementation in automotive industry in China in order to identify the critical success factors. Design/methodology/approach - A review of relevant literature is used to identify potential critical success factors for lean manufacturing implementations. The research had targeted lean-manufacturing management, practitioners, process users, and consultants working in automotive industry in China. Data were collected with an electronic survey which included 20 close ended questions, each measured by using five-point scale, Out of total 200 questionnaire distributed, 80 useable responses were received resulting in 40 % response rate. A judgmental sampling technique had been selected. Both descriptive and inferential statistics had been used to analyze this data.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
X