Refine Your Search

Topic

Author

Search Results

Technical Paper

Method of Improving Slam Durability Fatigue of Vehicle Liftgate Subsystem for Fast-Track Vehicle Development Cycle

2024-01-16
2024-26-0302
With reference to present literature, most OEMs are working on reducing product development time by around ~20%, through seamless integration of digital ecosystem and focusing on dynamic customer needs. The Systems Engineering approach focuses on functions & systems rather than components. In this approach, designers (Computer Aided Design) / analysts (Computer Aided Engineering) need to understand program requirements early to enable seamless integration. This approach also reduces the number of iterative loops between cross functions thereby reducing the development cycle time. In this paper, we have attempted to tackle a common challenge faced by Closures (Liftgate) engineering: meeting slam durability fatigue life while replicating customer normal and abusive closing behavior.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Technical Paper

Multiphase Flow Simulations of Poppet Valve Noise and Vibration

2015-04-14
2015-01-0666
A deeper understanding of the complex phenomenology associated with the multiphase flow-induced noise and vibration in a dynamic valve is of critical importance to the automotive industry. To this purpose, a two-dimensional axisymmetric numerical model has been developed to simulate the complex processes that are responsible for the noise and vibration in a poppet valve. More specifically, an Eulerian multiphase flow model, a dynamic mesh and a user-defined function are utilized to facilitate the modeling of this complicated two-phase fluid-structure interaction problem. For a two-phase flow through the valve, our simulations showed that the deformation and breakup of gas bubbles in the gap between the poppet and the valve seat generates a vibration that arises primarily from the force imbalance between the spring and the two-phase fluid flow induced forces on the poppet.
Technical Paper

An Integrated Approach to Requirements Development and Hazard Analysis

2015-04-14
2015-01-0274
The introduction of new safety critical features using software-intensive systems presents a growing challenge to hazard analysis and requirements development. These systems are rich in feature content and can interact with other vehicle systems in complex ways, making the early development of proper requirements critical. Catching potential problems as early as possible is essential because the cost increases exponentially the longer problems remain undetected. However, in practice these problems are often subtle and can remain undetected until integration, testing, production, or even later, when the cost of fixing them is the highest. In this paper, a new technique is demonstrated to perform a hazard analysis in parallel with system and requirements development. The proposed model-based technique begins during early development when design uncertainty is highest and is refined iteratively as development progresses to drive the requirements and necessary design features.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Journal Article

Effect of Temperature and Aeration on Fluid-Elastomer Compatibility

2013-04-08
2013-01-0652
To investigate the effect of aeration on fluid-elastomer compatibility, 4 types of elastomers were aged in three gear lubes. The four types of elastomers include a production fluorinated rubber (FKM) and production hydrogenated nitrile rubber (HNBR) mixed by the part fabricator, a standard low temperature flexible fluorinated rubber (FKM, ES-4) and a standard ethylene-acrylic copolymer (AEM, ES-7) mixed by SAE J2643 approved rubber mixer. The three gear lubes are Fluid a, Fluid b and Fluid c, where Fluid b is a modified Fluid with additional friction modifier, and Fluid c is friction modified chemistry from a different additive supplier. The aeration effect tests were performed at 125°C for 504 hours. The aerated fluid aging test was performed by introducing air into fluid aging tubes as described in General Motors Company Materials Specification GMW16445, Appendix B, side-by-side with a standard ASTM D471 test.
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Technical Paper

Experimental Investigation on the Effects on Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and HVO

2013-04-08
2013-01-1679
The effects of using blended renewable diesel fuel (30% vol.), obtained from Rapeseed Methyl Ester (RME) and Hydrotreated Vegetable Oil (HVO), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The hydraulic behavior of the common rail injection system was verified in terms of injected volume and injection rate with both RME and HVO blends fuelling in comparison with commercial diesel. Further, the spray obtained with RME B30 was analyzed and compared with diesel in terms of global shape and penetration, to investigate the potential differences in the air-fuel mixing process. Then, the impact of a biofuel blend usage on engine performance at full load was first analyzed, adopting the same reference calibration for all the tested fuels.
Technical Paper

A Fatigue Prediction Method for Spot Welded Joints

2013-04-08
2013-01-1208
Generally linear finite element analysis (FEA) is used to predict fatigue life of spot welded joints in a vehicle body structure. Therefore, the effect of plastic deformation at the vicinity of the spot welded joints is not included on fatigue prediction. This study introduces a simple technique to include the plastic deformation effect without performing elastic-plastic finite element analysis. The S-N curve obtained from fatigue test results is modified to consider this effect. Tensile strength test results of spot welded joint specimens were utilized to find the load range for FEA equivalent to the applied load range for fatigue tests. To demonstrate the proposed approach, fatigue test results of advanced high strength steels (AHSS) for lap-shear and coach peel specimens were used. Both the specimen types were tested at various constant amplitudes with the load ratios of R=0.1 and 0.3.
Technical Paper

A Unified Framework of Adaptive Cruise Control for Speed Limit Follower and Curve Speed Control Function

2013-04-08
2013-01-0618
Today many vehicles are being developed with advanced computing and sensing technologies. These new technologies have contributed in enhancing driving safety and convenience. As an example, the Adaptive Cruise Control (ACC) can automatically adjust the vehicle speed to driver's set speed and maintain the driver-requested headway distance to the lead vehicle. In this paper, we further consider the automatic control of speed according to the road attributes, e.g., the speed limit and curve of the road. Two new features, ‘speed limit follower’ and ‘curve speed control’ algorithms, are proposed in this paper. These new features communicate with the conventional ACC system and control the vehicle speed while traveling across different curved roads and speed limit zones. These new features were developed as an independent function, so they can be integrated with any other existing ACC systems.
Technical Paper

Temperature Effects on the Deformation and Fracture of a Quenched-and-Partitioned Steel

2013-04-08
2013-01-0610
Temperature effects on the deformation and fracture of a commercially produced transformation-induced plasticity (TRIP) steel subject to a two-step quenching and partitioning (Q&P) heat treatment are investigated. Strain field evolution at room temperature is quantified in this 980 MPa grade Q&P steel with a stereo digital image correlation (DIC) technique from quasi-static tensile tests of specimens with 0°, 45°, and 90° orientations. Baseline tensile properties along with the variation of the instantaneous hardening index with strain were computed. Variations of the bake-hardening index were explored under simulated paint bake conditions. Tensile properties were measured at selected temperatures between -100°C and 200°C and the TRIP effect was found to be temperature-dependent due to stress-induced martensitic transformation at lower temperatures versus strain-induced transformation at higher temperatures.
Technical Paper

ASIL Decomposition: The Good, the Bad, and the Ugly

2013-04-08
2013-01-0195
ASIL decomposition is a method described in the ISO 26262 standard for the assignment of ASILs to redundant requirements. Although ASIL decomposition appears to have similar intent to the hardware fault tolerance concept of IEC 61508-2, ASIL decomposition is not intended to reduce ASIL assignments to hardware elements for random hardware failures, but instead focuses on functions and requirements in the context of systematic failures. Based on our participation in the development of the standard, the method has been applied in different ways in practice, not all of which are fully consistent with the intent of the standard. Two potential reasons that may result in the use of “modified” ASIL algebra include the need of OEMs to partition a system and specify subsystem requirements to suppliers and the need for designers to construct systems bottom up.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Journal Article

Iterative Learning Control for a Fully Flexible Valve Actuation in a Test Cell

2012-04-16
2012-01-0162
An iterative learning control (ILC) algorithm has been developed for a test cell electro-hydraulic, fully flexible valve actuation system to track valve lift profile under steady-state and transient operation. A dynamic model of the plant was obtained from experimental data to design and verify the ILC algorithm. The ILC is implemented in a prototype controller. The learned control input for two different lift profiles can be used for engine transient tests. Simulation and bench test are conducted to verify the effectiveness and robustness of this approach. The simple structure of the ILC in implementation and low cost in computation are other crucial factors to recommend the ILC. It does not totally depend on the system model during the design procedure. Therefore, it has relatively higher robustness to perturbation and modeling errors than other control methods for repetitive tasks.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Technical Paper

Optimal Use of Boosting Configurations and Valve Strategies for High Load HCCI - A Modeling Study

2012-04-16
2012-01-1101
This study investigates a novel approach towards boosted HCCI operation, which makes use of all engine system components in order to maximize overall efficiency. Four-cylinder boosted HCCI engines have been modeled employing valve strategies and turbomachines that enable high load operation with significant efficiency benefits. A commercially available engine simulation software, coupled to the University of Michigan HCCI combustion and heat transfer correlations, was used to model the HCCI engines with three different boosting configurations: turbocharging, variable geometry turbocharging and combined supercharging with turbocharging. The valve strategy features switching from low-lift Negative Valve Overlap (NVO) to high-lift Positive Valve Overlap (PVO) at medium loads. The new operating approach indicates that heating of the charge from external compression is more efficient than heating by residual gas retention strategies.
Technical Paper

Effects of Gage Section Geometry on Tensile Material Properties by Digital Image Correlation

2012-04-16
2012-01-0184
Accurate material property data in both the elastic and plastic ranges of deformation is essential for accurate material representation in finite element simulations of vehicle systems. Variation of post formed material properties across a part are often of interest in different types of analyses, such as metal forming or fatigue life, for example. Depending on a part's shape it is not always possible to cut standard size tensile test specimens from all areas of interest across the part. Smaller size specimens with curved or tapered gage section may have to be used to promote strain localization and fracture at or near the gage center. This paper presents comparison of quasi-static tensile properties determined using two specimen gage section geometries, straight and tapered. Specifically, the following questions are addressed. How do the engineering strains computed from two-dimensional strain fields obtained by DIC compare to strains measured during standard tensile tests?
Technical Paper

A Displacement-Approach for Liftgate Chucking Investigation

2012-04-16
2012-01-0217
A displacement-based CAE analysis is applied to liftgate chucking noise problems. A CAE simulation model of a small-size sport utility vehicle (SUV) is simulated with a set of realistic road loads as a time transient simulation. The model contains a trimmed vehicle, a liftgate and structural body-liftgate interface components such as the latch-striker wire, contact wedges and slam bumpers. Simulation design of experiments (DOE) is carried out with the model. As performance measures, the relative displacements at the contact points of the interface components are selected, since they are considered the direct cause of liftgate chucking. As design variables, body structure stiffness, liftgate stiffness, liftgate opening stiffness, stiffness characteristics of the interface components and additional liftgate mass are selected. Results of the simulation DOE is post-processed, and response surface models (RSM) are fit for the performance measures.
Technical Paper

Characterization of Mechanical Behavior of Thermoplastics with Local Deformation Measurement

2012-04-16
2012-01-0040
In quasi-static tension and compression tests of thermoplastics, full-field strain distribution on the gage section of the specimen can be captured using the two-dimensional digital image correlation method. By loading the test specimens made of a talc-filled and impact-modified polypropylene up to tensile failure and large compressive strains, this study has revealed that inhomogeneous deformation within the gage section occurs quite early for both test types. This leads to the challenge of characterizing the mechanical properties - some mechanical properties such as stress-strain relationship and fracture strain could depend on the measured section length and location. To study this problem, the true stress versus true strain curves determined locally in different regions within the gage length are compared.
Technical Paper

Methods and Tools for End-to-End Latency Analysis and Optimization of a Dual-Processor Control Module

2012-04-16
2012-01-0029
Automotive HW/SW architectures are becoming increasingly complex to support the deployment of new safety, comfort, and energy-efficiency features. Such architectures include several software tasks (100+), messages (1000+), computational and communication resources (70+ CPUs, 10+ buses), and (smart) sensors and actuators (20+). To cope with the increasing system complexity at lowest development and product costs, highest safety, and fastest time to market, model-based rapid-prototyping development processes are essential. The processes, coupled with optimization steps aimed at reducing the number of software and hardware resources while satisfying the safety requirements, enable reduction of the system complexity and ease downstream testing/validation efforts. This paper describes a novel model-based design exploration and optimization process for the deployment of a set of software tasks on a dual-processor control module implementing a fail-safe strategy.
X