Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Surge Prediction in a Single Sequential Turbocharger (SST) Compressor Using Computational Fluid Dynamics

2019-06-05
2019-01-1490
The Single Sequential Turbocharger (SST) used in Ford’s 6.7L Scorpion Diesel is analyzed using Computational Fluid Dynamics (CFD) to draw conclusions about the compressor stability at low mass flows. The SST compressor concept consists of a double-sided wheel which flows in parallel fed by two separate inlets (front and rear), followed by a single vane-less diffuser, and a volute. CFD simulations for the full stage are performed at low mass flow rates Both, front and rear, sides have ported shroud casing-treatment (CT) in the inlet region. An objective of the analysis is to determine which side of the SST unit compressor (front or rear on the double-sided wheel) suffers flow break down first as the mass flow is reduced, and its impact on the overall stability of the SST compressor. Another objective is to better understand the interactions between the compressor inlet flow and the flow through the casing-treatment.
Technical Paper

Optimal Pressure Relief Groove Geometry for Improved NVH Performance of Variable Displacement Oil Pumps

2019-06-05
2019-01-1548
Variable Displacement Oil Pump (VDOP) is becoming the design of choice for engine friction reduction and fuel economy improvement. Unfortunately, this pump creates excessive pressure ripples, at the outlet port during oil pump shaft rotation, causing oscillating forces within the lubrication system and leading to the generation of objectionable tonal noises and vibrations. In order to minimize the level of noise, different vanes spacing and porting geometries are used. Moreover, an oil pressure relief groove can be added, at the onset of the high pressure port, to achieve this goal. This paper presents an optimization method to identify the best geometry of the oil pressure relief groove. This method integrates adaptive meshing, 3D CFD simulation, Matlab routine and Genetic Algorithm based optimization. The genetic algorithm is used to create the required design space in order to perform a multi-objective optimization using a large number of parameterized groove geometries.
Technical Paper

The Effect of Friction Modifiers and DI Package on Friction Reduction Potential of Next Generation Engine Oils: Part II Aged Oils

2019-04-02
2019-01-0303
Engine oil plays an important role in improving fuel economy of vehicles by reducing frictional losses in an engine. Our previous investigation explored the friction reduction potential of next generation engine oils by looking into the effects of friction modifiers and dispersant Inhibitor packages when engine oil was fresh. However, engine oil starts aging the moment engine start firing because of high temperature and interactions with combustion gases. Therefore, it is more relevant to investigate friction characteristics of aged oils. In this investigation, oils were aged for 5000 miles in taxi cab application.
Technical Paper

Quantifying the Effect of Initialization Errors for Enabling Accurate Online Drivetrain Simulations

2019-04-02
2019-01-0347
Simulations conducted on-board in a vehicle control module can offer valuable information to control strategies. Continued improvements to on-board computing hardware make online simulations of complex dynamic systems such as drivetrains within reach. This capability enables predictions of the system response to various control actions and disturbances. Implementation of online simulations requires model initialization that is consistent with the physical drivetrain state. However, sensor signals and estimated variables are susceptible to errors, compromising the accuracy of the initialization and any future state predictions as the simulation proceeds through the numerical integration process. This paper describes a drivetrain modeling and analysis method that accounts for initialization errors, thereby enabling accurate simulations of system behaviors.
Technical Paper

An Analytical Methodology for Engine Gear Rattle and Whine Assessment and Noise Simulation

2019-04-02
2019-01-0799
In this paper, a CAE methodology based on a multiphysics approach for engine gear noise evaluation is reviewed. The method comprises the results and outputs from several different analytical domains to perform the noise risk assessment. The assessment includes the source-path analysis of the gear-induced rattling and whining noise. The vibration data from the exterior surface of the engine is extended through acoustic analysis to perform the engine noise simulation and to identify acoustic hot spots contributing to the noise. The study includes simulations under different engine loading conditions with results presented in both time and frequency domains. Various sensitivity analyses involving different gear geometries and micro-geometries are investigated as well. Finally, the simulation results from three different engines are compared vis-a-vis.
Technical Paper

Vane Pump Whining Noise Reduction by Vane Spacing Optimization

2019-04-02
2019-01-0841
A traditional vane type oil pump used inside the engines and the transmissions has equal angles or spacing between the vanes. The equal spacing intensifies pressure fluctuations generated within the pump leading to narrowband pressure spikes at the pump main order and its harmonics. Unequal spacing, however, can relax the severity of the spikes by breaking down the narrowband peaks and distributing them over a larger frequency range. Optimization of the angles within the pump design constraint can maximize the benefit of unequal spacing in reducing the pressure pulsations for a lower risk of engine or transmission whine. The scope of this paper is around the optimization process for vane spacing and different objective functions which can be used to obtain optimized solutions. The simulation results for optimized spacing based on two different objective functions for 7, 8 and 9 vanes are presented. The design constraints for the optimization are discussed as well.
Technical Paper

Modeling Static Load Distribution and Friction of Ball Bearings and BNAs: Towards Understanding the “Stick-Slip” of Rack EPAS

2019-04-02
2019-01-1240
Electric power assisted steering (EPAS) systems are widely adopted in modern vehicles to reduce the steering effort of drivers. In rack EPAS, assist torque is applied by a motor and transmitted through two key mechanical components: ball bearing and ball nut assembly (BNA) to turn the front wheels. Large combined load and manufacturing errors not only make it hard to accurately calculate the load distribution in the ball bearing and BNA for the purpose of sizing, but also make the friction behavior of EPAS gear complicated. Rack EPAS gear is well known to suffer from “stick-slip” (i.e., sticky feel sensed by the driver), which affects the user experience. “Stick-slip” is an extreme case of friction variation mainly coming from ball bearing and BNA. Finite Element Analysis (FEA) in commercial software like ANSYS is usually conducted to study the load distribution and friction of ball bearing and BNA.
Technical Paper

Effective Suppression of Surge Instabilities in Turbocharger Compression Systems through a Close-Coupled Compressor Inlet Restriction

2018-09-10
2018-01-1714
The current work demonstrates effective suppression of compression system surge instabilities by installing a variable cross-sectional flow area restriction within the inlet duct of a turbocharger centrifugal compressor operating on a bench-top facility. This restriction couples with the compressor, similar to stages in a multi-stage turbomachine, where the effective pressure ratio is the product of those for the restriction and compressor. During experiments at constant compressor rotational speed, the compressor is stable over the negatively sloped portion of the pressure ratio vs. flow rate characteristics, so the restriction is eliminated within this operating region to preserve compressor performance. At low flow rates, the slope of the compressor alone characteristics reaches a positive value, and the unrestricted compression system enters mild surge. Further reduction of flow rate with the unrestricted compressor inlet results in a sudden transition to deep surge instabilities.
Technical Paper

Coating on striker: Robust corrosion protection with low cost

2018-09-03
2018-36-0044
Corrosion is a known phenomenon that the automotive industry needs to pay attention, once that several issues faced in the field had it as root cause. Indisputably is important spend resources in usage of proper materials and process based on chemical properties, minimum thickness, adhesion conditions, wear resistance, finish applicators, etc. to cover the parts in order to ensure robust protection against this phenomena; however, the key point is to optimize these resources once that the customer will buy/use the vehicle (not the part singly); so if develop a proper design in system level providing proper protection of the parts, despite of the part does not have the most efficient protection level, the customers will have a satisfactory experience during vehicle usage.
Technical Paper

One piece hot formed AB ring reinforcement

2018-09-03
2018-36-0022
The usage of Boron steel in the South American automotive industry has been increasing in recent years. Considering its high hardening properties, sheet metal parts can only be manufactured using a hot forming process, as compared to a conventional cold forming process; however, the hot stamping process offers the advantage to stamp a part in a single die vs. multiple dies using a regular cold stamping process. The main objective is to present the advantages of constructing the whole AB ring reinforcement out of Boron steel and made out of a single die, and no welding among the A pillar reinforcement, B Pillar reinforcement and rocker panel. This type of design has helped to achieve crash safety performance goals, enhance the structural characteristics of joints, improve dimensional control, reduce the number of welds, manage BIW overall weight and improve torsion rigidity.
Technical Paper

Closures weatherstrips with variable cross sections

2018-09-03
2018-36-0152
Closures systems performance is a trade-off between NVH (Noise, Vibration and Harshness) and DCE (Door Closing Efforts) requirements. Dynamic sealing performance and sheet metal rigidity are the key contributors for a stable system. The seals actuate like a spring on the system. Higher seal load is good for NVH performance, adding more dumping to the system, but it will negatively affect DCE, as it will demand additional energy to close the system. Nominal seal load must be defined to achieve a balance between these attributes. This study is about dynamic sealing profiles with variable seal load, which provides tunable solutions to address the trade-off between NVH and DCE on the side doors or rear closures. Dynamic sealing weatherstrips are made of sponge EPDM extruded profiles with a specified load, defined by its CLD (Compression Load Deflection), which is given by the cross section design.
Technical Paper

A NVH CAE approach performed on a vehicle closures pumping issue

2018-09-03
2018-36-0287
The use of finite element modeling (FEM) tools is part of the most of the current product development projects of the automotive industry companies, replacing an important part of the physical tests with lower costs, higher speed and with increasing accuracy by each day. In addition to this, computer-aided engineering (CAE) tools can be either used after the product is released, at any moment of the product life, in many different situation as a new feature release, to validate a more cost-efficient design proposal or to help on solving some manufacturing problem or even a vehicular field issue. Different from the phase where the product is still under development, when standard virtual test procedures are performed in order to validate the vehicle project, in this case, where engineers expertise plays a very important role, before to proceed with any standard test it is fundamental to understand the physics of the phenomena that is causing the unexpected behavior.
Technical Paper

Calculating System Failure Rates Using Field Return Data. Application of SAE-J3083 for Functional Safety and Beyond

2018-04-03
2018-01-1074
In early design activities (typically before the hardware is built), a reliability prediction is often required for the electronic components and systems in order to assess their future reliability and in many cases to meet customer specifications. These specifications may include the allocated reliability for a particular electronic unit and in the cases of functional safety products to meet the ASIL (Automotive Safety and Integrity Level) requirement specified by the functional safety standard ISO 26262. The standard allows for the use of “statistics based on field returns or tests” as a valid alternative to the handbook-based reliability prediction. This paper presents a newly developed SAE-J3083 standard “Reliability Prediction for Automotive Electronics Based on Field Return Data”, which covers the types of the required data, ways to collect it, and the methodology of how to process this data to calculate the failure rates and meet the expected safety goals.
Technical Paper

On the Robustness of Adaptive Nonlinear Model Predictive Cruise Control

2018-04-03
2018-01-1360
In order to improve the vehicle’s fuel economy while in cruise, the Model Predictive Control (MPC) technology has been adopted utilizing the road grade preview information and allowance of the vehicle speed variation. In this paper, a focus is on robustness study of delivered fuel economy benefit of Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier in the literature to several noise factors, e.g. vehicle weight, fuel type etc. Further, the vehicle position is obtained via GPS with finite precision and source of road grade preview might be inaccurate. The effect of inaccurate information of the road grade preview on the fuel economy benefits is studied and a remedy to it is established.
Technical Paper

Technical Analysis of Severe Cornering Induced Tire Wear on Vehicle Limit Handling through Repeatable On-Track Vehicle Testing

2018-04-03
2018-01-0558
In repeated physical testing of vehicles at or near their handling limit, tire shoulder wear occurs that is not typical of normal customer use. It has been observed for decades that this type of severe cornering induced tire wear can have a significant effect on the force and moment characteristics of tires. In this study, the severe cornering wear effect was studied by testing vehicles in a highly controlled manner using a robot steering controller. This testing shows how vehicle response to the exact same steering input changes significantly as the number of runs on the same tires accumulates. In fact, vehicles were found to not lift tires from the ground in initial runs then tip-up hard onto outriggers in later runs as the tires are abraded. Additionally, for one vehicle configuration an additional run was made with tires that had accumulated 16,000 km (10,000 miles) of normal customer usage.
Technical Paper

Finite Element Analysis and Test Correlation for Pressing and Staking of Planetary Gear Pinion Shaft

2018-04-03
2018-01-0481
During the assembly process of planetary gears, the pinion shaft is initially pressed in to the planetary carrier and then staking is performed to fix the pinion shaft to the carrier. The main purpose of the staking process is to prevent the movement of the pinion shaft during transmission operation. During assembly there should be minimal distortion of the assembly. The press-in process, pinion shaft and carrier are subjected to extremely high frictional loading due to the interference fit. The staking process permanently deforms the pinion shaft top and bottom ends, forming a protrusion that holds the shaft in position. The pinion shaft needs to sustain operational loads exerted by helical planetary gears, which tend to push the carrier flange out of position during operation. Staking length, staking force and interference between shaft and carrier hole are the critical parameters, which determine the maximum axial force that the pinion shaft can withstand.
Technical Paper

Development of a CAE Method for Predicting Vehicle Launch Performance with Various VCT Strategies

2018-04-03
2018-01-0487
Powertrain and vehicle technology is rapidly changing to meet the ever increasing demands of customers and government regulations. In some cases technologies that are designed to improve one attribute may impact others or interact with other design decisions in unexpected ways. Understanding the interactions and optimizing the transient performance at the vehicle level may require controls and calibration that is not available until late in the vehicle development process, after hardware changes are no longer possible. As a result, an efficient, up front, CAE process for assessing the interaction of various design choices on transient vehicle behavior is desirable. Building, calibrating and validating a vehicle system model with full controls and a mature calibration is very time consuming and often requires significant experimental data that is not available until it is too late to make hardware changes.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Technical Paper

Engine Coolant Jet Pump Design for Optimal Pumped Flow Performance

2018-04-03
2018-01-0082
Jet pumps are a viable option of pumping fluid if a pressurized flow stream is available as an energy source. For a Ford engine cooling circuit an effort was undertaken to improve an existing (conventional) jet pump design which could not meet the more demanding pumped flow requirements. Various virtual jet pump designs were analyzed using 3D CFD where the pumped flowrate was used to evaluate the effectiveness of the design. It was found that the existing design could not be modified to provide the needed pumped flow rate. It was decided to forgo the current design and develop a completely new configuration. This effort produced many design variances which were evaluated and resulted in a final design that closely achieved the pumped flow rate requirements. As new designs were evaluated through the process, particular geometrical aspects were observed to induce flow characteristics which improved the pumped flow performance.
X