Refine Your Search

Topic

Search Results

Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Friction Damped Disc Brake Rotor

2010-04-12
2010-01-0077
Over the last five years, the automotive industry has experienced a trend towards niche performance vehicles equipped with high-output powertrains. These high performance vehicles also demand higher output braking systems. One method used to provide enhanced pedal feel and fade performance is to equip vehicles with higher apparent friction linings. The challenge then becomes how to design and manufacture these brake systems without high-frequency disc brake squeal and without paying a significant mass penalty. One alternative is to design disc brake rotors with increased damping. There are several options for increasing rotor damping. The classical approach is to increase the rotor's cast iron carbon content, thus increasing the internal material damping of the rotor. However, this methodology provides only a small increase in rotor damping. Alternatively, the rotor damping can be increased by introducing friction, sometimes referred to as Coulomb damping.
Technical Paper

Application of a Constrained Layer Damping Treatment to a Cast Aluminum V6 Engine Front Cover

2005-05-16
2005-01-2286
Constrained Layer Damping (CLD) treatments have long provided a means to effectively impart damping to a structure [1, 2 and 3]. Traditionally, CLD treatments are constructed of a very thin polymer layer constrained by a thicker metal layer. Because the adhesion of a thin polymer layer is very sensitive to surface finish, surfaces that a CLD treatment can be effectively applied to have historically been limited to those that are very flat and smooth. New developments in material technology have provided thicker materials that are very effective and less expensive to apply when used as the damping layer in a CLD treatment. This paper documents the effectiveness of such a treatment on a cast aluminum front cover for a V6 engine. Physical construction of the treatment, material properties and design criteria will be discussed. Candidate applications, the assembly process, methods for secondary mechanical fastening will be presented.
Book

SAE Ferrous Materials Standards Manual - 2004 Edition

2004-07-21
The 2004 SAE Ferrous Materials Standards Manual provides a comprehensive compilation of the SAE Technical Reports relating to specifications, testing, and defining of Ferrous Materials. These standards, Recommended Practices, and Information Reports have been developed by Carbon and Alloy Steels Committee, Metals Test Procedures Committee, Automotive Iron and Steel Castings Committee, Sheet and Strip Steel Committee, Elevated Temperature Properties of Ferrous Metals Committee who comprise the Metals Technical Executive Committee (MTEC). MTEC also governs the other Standards, Recommended Practices, and Information Reports that have been developed by prior division that are now inactive. As an informational guide and background for the values and procedures in the SAE Technical Report, HS-30 also includes Examples of Related SAE Technical Papers.
Technical Paper

A Bursting Failure Criterion for Tube Hydroforming

2002-03-04
2002-01-0794
Fundamental differences exist between sheet metal forming and hydroforming processes. Sheet metal forming is basically a one step metal fabrication process. Almost all plastic deformation of an originally flat blank is introduced when the punch is moved normal to a clamped sheet metal. Hydroforming, however, consists of multiple steps of tube making, pre-bending, crushing, pressurization, etc. Each of the above mentioned steps can introduce permanent plastic deformations. The forming limit diagram obtained for sheet metal forming may or may not be used in hydroforming evaluations. A failure criterion is proposed for predicting bursting failures in tube hydroforming. The tube material's stress-strain curve, obtainable from uniaxial tensile test and subjected to some postulations under large stress/strain states, is used in judging the failure.
Technical Paper

The Bulge of Tubes and a Failure Criterion for Tube Hydroforming

2001-03-05
2001-01-1132
The bulge test in hydroforming is a simple fundamental experiment used to obtain basic knowledge in tube expansion. The results can be used to assist design and manufacturing of hydroformed automotive parts. It also can be used to develop a failure criterion for tubes in hydroforming. For these purposes, a section of a long unsupported tube with fixed ends was simulated numerically to obtain the mechanical states of the tube subjected to internal pressure. Steel and aluminum tubes are used. For the bulge tests, the internal pressure reaches a maximum and then decreases in value without failure while the stress, strain and volume of the tube keep increasing. A failure criterion for the bursting of a tube is proposed based on the stress-strain curve of the material.
Technical Paper

Performance of Coatings for Underbody Structural Components

2001-03-05
2001-01-0363
The Auto/Steel Partnership established the Light Truck Frame Project Group in 1996 with two objectives: (a) to develop materials, design and fabrication knowledge that would enable the frames on North American OEM (original equipment manufacturer) light trucks to be reduced in weight, and (b) to improve corrosion resistance of frames on these vehicles, thereby allowing a reduction in the thickness of the components and a reduction in frame weight. To address the issues relating to corrosion, a subgroup of the Light Truck Frame Project Group was formed. The group comprised representatives from the North American automotive companies, test laboratories, frame manufacturers, and steel producers. As part of a comprehensive test program, the Corrosion Subgroup has completed tests on frame coatings. Using coated panels of a low carbon hot rolled and pickled steel sheet and two types of accelerated cyclic corrosion tests, seven frame coatings were tested for corrosion performance.
Technical Paper

The Effects of Head Gasket Geometry on Engine-Out HC Emissions from S.I. Engines

1999-10-25
1999-01-3580
This study evaluated multi-layer steel and composite head gaskets of various thicknesses (0.43 to 1.5 mm) and fire-ring diameters to determine the influence of head gasket crevices on engine-out hydrocarbon (HC) emissions. The upper limit in the percent reduction in HC emissions from gasket-design modifications is estimated to be about 15%. At part-load conditions, the lowest HC emissions were measured for head-gasket thickness of about 1 mm. Significantly smaller thicknesses of the order of 0.4 mm result in an increase in HC emissions. Substantial hydrocarbon-emissions advantage may be realized by minimizing the gasket-to-cylinder bore offset.
Technical Paper

Application of Hydroformed Aluminum Extrusions to Vehicle Sub-Frame with Varied Wall Thickness

1999-09-28
1999-01-3180
In a typical hydroforming operation, a round tube of constant wall thickness is bent into the overall shape desired for the final part, then placed between a pair of dies. Despite some small percentage of stretch that may occur as the tube expands, the wall thickness in the original tube is therefore substantially constant at all points. In some circumstances, a part is locally thickened or reinforced for extra strength. Normally, this is achieved by using a separate piece of reinforcement at selected location. In this paper, it is intended to present a unique method to achieve an optimal structural design allowing thin or thick gages where required along its cross-section. This is done via hydroforming an aluminum extrusion tube to an optimal frame structure having varied wall thickness to satisfy various loading requirements at a minimum weight. The engine cradle is used as an example to demonstrate this methodology.
Technical Paper

Counter-Gravity Casting Process for Making Thinwall Steel Exhaust Manifolds

1997-02-24
970920
Casting technology developmentshave led to a manufacturing process that allows the casting of thin wall (2-3mm) heat resistant ferritic stainless steel exhaust manifolds which can replace stamped and tubular weldments as well as iron castings where temperature requirements are increased. This casting process combines the thin wall and clean metal benefits of the counter gravity, vacuum-assist casting process using thin, light-weight bonded sand molds supported by vacuum-ridgidized sand. This combination is called the LSVAC (Loose Sand Vacuum Assisted Casting) process, a patented process. This process will significantly contribute to the growth of near-net shape steellstainless steel castings for automotive and allied industries. For exhaust manifolds, a modified grade of ferritic stainless steel with good oxidation resistance to 950°C in high dew point synthetic exhaust gas atmospheres was developed.
Technical Paper

Rear Full Overlap High Speed Car-to-Car Impact Simulation

1995-04-01
951085
A rear full overlap car-to-car high speed impact simulation using the DYNA3D Finite Element Software was performed to examine the crush mode for rear structure of a vehicle and to observe the effect of rear bumper system in order to maintain the fuel system integrity. The study was conducted first for two different bumper system configurations, namely: (1) validating the model for struck vehicle with steel rear bumper system, (2) simulating rear end collision with composite rear bumper system attached to the rear rails of struck vehicle. Later a third simulation of the model was conducted with a viable design modification to the composite bumper system for improved crashworthiness. It was identified that a more comprehensive FEA model of the bullet car including front end structure, powertrain components, cooling system and other components which constitute the load paths should be incorporated in the analysis to obtain more meaningful correlation and crashworthiness prediction.
Technical Paper

Influence of Laser Welding Parameters on Formability and Robustness of Blank Manufacturing: An Application to a Body Side Frame

1995-02-01
950922
A design of experiments is used to study the effect of laser weld parameters on formability of welded blanks for two different material combinations of cold rolled (bare) steel to cold rolled steel and cold rolled steel to hot dipped galvanized steel. Critical weld parameters influencing the formability of welded blanks are identified and the optimum weld set-up condition is obtained based on formability performance and consistency of formability for laser welded blanks. The results are applied to an automotive body side frame. The robustness of welded blank production is also assessed and the final welded set-up condition for the body side frame is obtained based on both the formability of welded blanks and the robustness of welded blank production. The body side frame is successfully made from the welded blanks with this final weld set-up condition.
Technical Paper

General Motors High Performance 4.3L V6 Engine

1992-02-01
920676
FIGURE 1 The 200 HP high performance 4.3L Vortec V6 engine has been developed to satisfy the need for a fuel efficient performance powerplant in the General Motors small truck platforms. Marketing requirements included strong low and mid range torque, relatively high specific power, smoothness and noise comparable to the best competitive six cylinder engines, excellent driveability, and a new technology image. Maintaining the 4.3L engine record of high reliability and customer satisfaction was an absolute requirement. Fuel economy and exhaust emission performance had to meet expected customer and legislated requirements in the mid 1990's.
Technical Paper

The Northstar DOHC V-8 Engine for Cadillac

1992-02-01
920671
General Motors Powertrain Division has developed a new V-8 engine for Cadillac vehicles in the 1990s. The Northstar engine incorporates the use of aluminum for both the cylinder block and head and other lightweight materials throughout. The valve train incorporates direct acting hydraulic lifters actuating the four valves per cylinder through dual overhead camshafts. The primary focus of the project has been to produce an engine of unquestioned reliability and exceptional value which is pleasing to the customer throughout the range of loads and speeds. The engine was designed with a light weight valve train, low valve overlap and moderate lift, resulting in a very pleasing combination of smooth idle and a broad range of power. The use of analytical methods early in the design stage enabled systems to be engineered to optimize reliability, pleaseability and value by reducing frictional losses, noise, and potential leak paths, while increasing efficiency and ease of manufacture.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Technical Paper

Evaluation of a Continuous Annealed Bake Hardenable Steel for Improved Dent Resistance

1989-02-01
890711
The potential of bake hardenable steel as a substitute for SAE 1008 steel to reduce gage and improve dent resistance is investigated in this report. Outer body panels in particular are susceptible to palm printing and other forms of denting. Conventional SAE 1008 steel and a developmental continuous annealed bake hardenable steel from Inland Steel Company are compared for dent performance properties. Bake hardenable (BH) steel is a medium strength (200-350 MPa) steel that receives an increase in yield strength during the heating of the paint bake cycle. An increase in yield strength would result in an increase in dent resistance. The increase in dent resistance is more quantitatively evaluated by comparing the BH steel with the current production material (SAE 1008) of a rear compartment lid outer.
Technical Paper

Nylon RIM Development for Automotive Body Panels

1985-02-01
850157
The performance and production requirements for future passenger vehicles has increased the efforts to replace metal body panels with plastic materials. This has been accomplished, to a large extent on some production vehicles that have been introduced recently. Unfortunately, these plastic body applications have necessitated special off-line handling or low temperature paint processing. However, the advantages of RIM nylon, offer the potential for uniquely new plastic body designs, that can be processed through existing assembly plants, much like the steel panels they are intended to replace. The intent of this paper is to discuss the rationale for future plastic body panel material selection and related nylon RIM development efforts.
X