Refine Your Search

Topic

Author

Search Results

Journal Article

High-Fidelity Transient Thermal Modeling of a Brake Corner

2016-09-18
2016-01-1929
There is an increasing interest in transient thermal simulations of automotive brake systems. This paper presents a high-fidelity CFD tool for modeling complete braking cycles including both the deceleration and acceleration phases. During braking, this model applies the frictional heat at the interface on the contacting rotor and pad surfaces. Based on the conductive heat fluxes within the surrounding parts, the solver divides the frictional heat into energy fluxes entering the solid volumes of the rotor and the pad. The convective heat transfer between the surfaces of solid parts and the cooling airflow is simulated through conjugate heat transfer, and the discrete ordinates model captures the radiative heat exchange between solid surfaces. It is found that modeling the rotor rotation using the sliding mesh approach provides more realistic results than those obtained with the Multiple Reference Frames method.
Journal Article

Composite Thermal Model for Design of Climate Control System

2014-04-01
2014-01-0687
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available.
Journal Article

Automotive Brake Hose Fluid Consumption Characteristics and Its Effects on Brake System Pedal Feel

2010-04-12
2010-01-0082
During the automotive brake system design and development process, a large number of performance characteristics must be comprehended, assessed, and balanced against each other and, at times, competing performance objectives for the vehicle under development. One area in brake development that is critical to customer acceptance due to its impact on a vehicle's perceived quality is brake pedal feel. While a number of papers have focused on the specification, quantification and modeling of brake pedal feel and the various subsystem characteristics that affect it, few papers have focused specifically on brake corner hoses and their effect on pedal feel, in particular, during race-track conditions. Specifically, the effects of brake hose fluid consumption pedal travel and brake system response is not well comprehended during the brake development process.
Technical Paper

Improvement on Cylinder-to-Cylinder Variation Using a Cylinder Balancing Control Strategy in Gasoline HCCI Engines

2010-04-12
2010-01-0848
Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI combustion, traditional HCCI engines show some degree of sensitivity to in-cylinder thermal conditions; thus higher cylinder-to-cylinder variation was observed especially at low load and high load operating conditions due to different injector characteristics, different amount of reforming as well as non-uniform EGR distribution. To address these issues, a cylinder balancing control strategy was developed for a multi-cylinder engine. In particular, the cylinder balancing control strategy balances CA50 and AF ratio at high load and low load conditions, respectively. Combustion noise was significantly reduced at high load while combustion stability was improved at low load with the cylinder balancing control.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Technical Paper

Oil Transport Analysis of a Cylinder Deactivation Engine

2010-04-12
2010-01-1098
Engine cylinder deactivation is used to save engine pumping loss but raises oil consumption concerns for the deactivated cylinders. In this paper, general mechanisms of oil transport via piston rings are reviewed. The characteristic of oil transport and oil accumulation in a cylinder deactivation mode through the piston ring path are analyzed. Suggestions to reduce the oil transport to the combustion chamber in a deactivated cylinder are discussed. In a deactivated cylinder, the amount of oil brought into the combustion chamber by the top ring up-scraping due to the ring/bore conformability difference between intake stroke and compression stroke is much less compared to a firing cylinder. However, compared to a firing cylinder, a deactivated cylinder has more oil entering the combustion chamber through the top ring end gap and ring groove as a result of the lower cylinder gas pressure, lower ring temperature and more frequent top ring axial movements.
Technical Paper

Diagnosis of Off-Brake Performance Issues with Low Range Pressure Distribution Sensors

2010-04-12
2010-01-0073
Brake caliper and corner behavior in the off-brake condition can lead, at times, to brake system performance issues such as residual drag (and related issues such as pulsation, judder, and loss of fuel economy), and caliper pryback during aggressive driving maneuvers. The dynamics in the brake corner can be strikingly complex, with numerous friction interfaces, rubber component and grease dynamics, deflections of multiple components, and significant dependence on usage conditions. Displacements of moving parts are usually small, and the residual forces in the caliper interfaces involved are also small in comparison with other forces acting on the same components, making direct observation very difficult. The present work attempts to illuminate off-brake behavior in two different conditions - residual drag and pryback - through the use of low-range pressure distribution sensors placed in between the caliper (pistons and fingers) and the brake pad pressure plates.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Combining DFSS and Multi-body Dynamics for Vehicle Ride Tuning

2007-04-16
2007-01-0586
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning.
Technical Paper

Adaptation of a Variable Displacement Vane Pump to Engine Lube Oil Applications

2007-04-16
2007-01-1567
Variable valve actuation has become a very popular feature in today's engines. With many of these systems being hydraulically actuated, the engine lubrication system requires enhancement to support their function. To expand the system's operational range with respect to speed and temperature, a traditional solution has been to increase oil pressure by increasing pump displacement. To better optimize the system, a variable displacement vane pump has been adapted to the engine lube oil system. Based on existing transmission pump technology, a pivoting cam ring design is employed that is able to vary the pump's displacement as a function of pump regulating oil pressure which in-turn provides a net reduction in its drive torque. While others have addressed this issue using complex and expensive pressure regulating systems, this passive solution requires no valves or additional hardware.
Technical Paper

Lead-time Reduction in Stamping CAE and Die Face Development using Massively Parallel Processing in Forming Simulations

2007-04-16
2007-01-1678
Since 1997, General Motors Body Manufacturing Engineering - Die Engineering Services (BME-DES) has been working jointly with our software vendor to develop and implement a parallel version of stamping simulation software for mass production analysis applications. The evolution of this technology and the insight gained through the implementation of DMP/MPP technology as well as performance benchmarks are discussed in this publication.
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

2006-10-16
2006-01-3241
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion

2006-04-03
2006-01-1520
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Technical Paper

Aeroacoustics of an Automotive A-Pillar Raingutter: A Numerical Study with the Ffowcs-Williams Hawkings Method

2005-05-16
2005-01-2492
A numerical simulation of the flow structure around an idealized automotive A-pillar rain-gutter and the sound radiated from it is reported. The idealized rain-gutter is an infinitesimally thin backward facing elbow mounted on a flat plate. It is kept in a virtual wind-tunnel with rectangular cross-section. The transient flow structure around the rain-gutter is described and time-averaged pressure distribution along the base plate is provided. Time-varying static pressure was recorded on every grid point on the base-plate as well as the rain-gutter surfaces and used to calculate sound pressure signal at a microphone held above the rain-gutter using the Ffowcs-Williams-Hawkings (FWH) integral method was used for calculating sound propagation. Both the transient flow simulation as well as the FWH sound calculation were performed using the commercial CFD code FLUENT6.1.22.
Technical Paper

Balanced Latin Hypercube Sampling for Stochastic Simulations of Spot Welds

2004-03-08
2004-01-1534
In performing stochastic simulations using computer models, the method of sampling is important. It affects the quality and the convergence speed of the results. This paper discusses one special case: sampling of spot-weld locations from potentially thousands of spot welds on a vehicle body. This study is prompted by the need of evaluating the effect of missed spot welds on the structural integrity, identifying critical welds, and optimizing weld locations. A balanced random sampling algorithm based on the concept of Latin-Hypercube sampling is developed for this application. We also present a case study in which the efficiency of three different sampling methods is compared using a car joint stiffness example. The new method, called the Balanced Latin-Hypercube Sampling (BLHS), has shown significantly faster convergence over the other two.
Technical Paper

Multiple Solutions by Performance Band: An Effective Way to Deal with Modeling Error

2004-03-08
2004-01-1688
Robust optimization usually requires numerous functional evaluations, which is not feasible when the functional evaluation is time-consuming. Examples in automobile industry include crash worthiness/safety and fatigue life simulations. In practice, a response surface model (RSM) is often used as a surrogate to the CAE model, so that robust optimization can be carried out. However, if the error in the RSM is significant, the solution based on the RSM can be invalid. This paper proposes a method of finding multiple candidate solutions, all of which have similar predicted performances. This approach is effective in finding the close-to-optimum solutions when the model has error, and providing design alternatives. Examples are provided to illustrate the method.
Technical Paper

Automotive Noise and Vibration Control Practices in the New Millennium

2003-05-05
2003-01-1589
The approaches used to develop an NVH package for a vehicle have changed dramatically over the last several years. New noise and vibration control strategies have been introduced, new materials have been developed, advanced testing techniques have been implemented, and sophisticated computer modeling has been applied. These approaches help design NVH solutions that are optimized for cost, performance, and weight. This paper explains the NVH practices available for use in designing vehicles for the new millennium.
Technical Paper

Dynamic Stress Correlation and Modeling of Driveline Bending Integrity for 4WD Sport Utility Vehicles

2002-03-04
2002-01-1044
Reducing the high cost of hardware testing with analytical methods has been highly accelerated in the automotive industry. This paper discusses an analytical model to simulate the driveline bending integrity test for the longitudinal 4WD-driveline configuration. The dynamic stresses produced in the adapter/transfer case and propeller shaft can be predicted analytically using this model. Particularly, when the 4WD powertrain experiences its structural bending during the operation speed and the propeller shaft experiences the critical whirl motion and its structural bending due to the inherent imbalance. For a 4WD-Powertrain application, the dynamic coupling effect of a flexible powertrain with a flexible propeller shaft is significant and demonstrated in this paper. Three major subsystems are modeled in this analytical model, namely the powertrain, the final rear drive, and the propeller shafts.
Technical Paper

Application of Variation Simulation in Body Assembly Process Design

2001-10-16
2001-01-3064
Build variation has long been recognized as one of the most important factors in vehicle performance. In this study an elastic assembly simulation program is used to guide a wheelhouse assembly process design to reduce build variation. Five (5) different clamping schemes are evaluated through the simulation program. From the five proposed process design choices, the best assembly process was identified, which results in reduced assembly variation and less tooling and manufacturing costs. Two different variation simulation approaches, one based on perturbation and the other based on Design of Experiments, were used to predict the assembly variation. Good agreement between the two approaches provided a validity check for the simulation tool.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
X