Refine Your Search

Topic

Author

Search Results

Technical Paper

Electro-Hydraulic Fully Flexible Valve Actuation System for Engine Test Cell

2010-04-12
2010-01-1200
Fully Flexible Valve Actuation (FFVA) systems provide maximum flexibility to adjust lift profiles of engine intake and exhaust valves. A research grade electro-hydraulic servo valve based FFVA system was designed to be used with an engine in a test cell to precisely follow desired lift profiles. Repetitive control was chosen as the control strategy. Crank angle instead of time is used to trigger execution to ensure repeatability. A single control is used for different engine speeds even though the period for one revolution changes with engine speeds. The paper also discusses lift profile extension, instantaneous lift profile switching capability and built-in safety features.
Technical Paper

Combining DFSS and Multi-body Dynamics for Vehicle Ride Tuning

2007-04-16
2007-01-0586
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning.
Technical Paper

Multivariate Robust Design

2005-04-11
2005-01-1213
In a complex system, large numbers of design variables and responses are involved in performance analysis. Relationships between design variables and individual responses can be complex, and the outcomes are often competing. In addition, noise from manufacturing processes, environment, and customer misusage causes variation in performance. The proposed method utilizes the two-step optimization process from robust design and performs the optimization on multiple responses using Hotelling's T2 statistic. The application of the T2-statistic allows the use of univariate tools in multiple objective problems. Furthermore, the decomposition of T20 into a location component, T2M and a dispersion component, T2D substitutes a complex multivariate optimization process with the simpler two-step procedure. Finally, using information from the experiment, a multivariate process capability estimates for the design can be made prior to hardware fabrication.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

Automotive Noise and Vibration Control Practices in the New Millennium

2003-05-05
2003-01-1589
The approaches used to develop an NVH package for a vehicle have changed dramatically over the last several years. New noise and vibration control strategies have been introduced, new materials have been developed, advanced testing techniques have been implemented, and sophisticated computer modeling has been applied. These approaches help design NVH solutions that are optimized for cost, performance, and weight. This paper explains the NVH practices available for use in designing vehicles for the new millennium.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Advances in Complex Eigenvalue Analysis for Brake Noise

2001-04-30
2001-01-1603
Brake squeal has been analyzed by finite elements for some time. Among several methods, complex eigenvalue analysis is proving useful in the design process. It requires hardware verification and it falls into a simulation process. However, it is fast and it can provide guidance for resolving engineering problems. There are successes as well as frustrations in implementing this analysis tool. Its capability, robustness and reliability are closely examined in many companies. Generally, the low frequency squealing mechanism is a rotor axial direction mode that couples the pads, rotor, and other components; while higher frequency squeal mainly exhibits a rotor tangential mode. Design modifications such as selection of rotor design, insulator, chamfer, and lining materials are aimed specifically to cure these noise-generating mechanisms. In GM, complex eigenvalue analysis is used for brake noise analysis and noise reduction. Finite element models are validated with component modal testing.
Technical Paper

Automotive A/C System Integrated with Electrically-Controlled Variable Capacity Scroll Compressor and Fuzzy Logic Refrigerant Flow Management

2001-03-05
2001-01-0587
This paper describes the recent efforts on developing an automotive climate control system throughout integrating an electrically-controlled variable capacity scroll compressor with a fuzzy logic control-based refrigerant flow management. Applying electrically-controlled variable capacity compressor technology to climate control systems has a significant impact on improving vehicle fuel economy, achieving higher passenger comfort level, and extending air and refrigerant temperature controllability as well. In this regard, it is very important for automotive climate control engineers to layout a system-level temperature control strategy so that the operation of variable capacity compressor can be optimized through integrating the component control schemes into the system-level temperature control. Electronically controlled expansion devices have become widely available in automotive air conditioning (A/C) systems for the future vehicle applications(1, 2, 3 and 4).
Technical Paper

The Bulge of Tubes and a Failure Criterion for Tube Hydroforming

2001-03-05
2001-01-1132
The bulge test in hydroforming is a simple fundamental experiment used to obtain basic knowledge in tube expansion. The results can be used to assist design and manufacturing of hydroformed automotive parts. It also can be used to develop a failure criterion for tubes in hydroforming. For these purposes, a section of a long unsupported tube with fixed ends was simulated numerically to obtain the mechanical states of the tube subjected to internal pressure. Steel and aluminum tubes are used. For the bulge tests, the internal pressure reaches a maximum and then decreases in value without failure while the stress, strain and volume of the tube keep increasing. A failure criterion for the bursting of a tube is proposed based on the stress-strain curve of the material.
Technical Paper

Frequency Domain Considerations in Vehicle Design for Optimal Structural Feel

2000-03-06
2000-01-1344
A vehicle perceived to be solid and vibration free is said to have good “structural feel”. Specification for vehicle design to achieve a good stuctural feel depends heavily on the management of resonant modes existing in the low frequency domain. These resonances include vehicle rigid body, chassis subsystem, body flexure and large component modes. A process to specify the placement of resonant modes in the low frequency domain is discussed. This process allocates blocks within the frequency domain for classes of resonant modes stated above. Segregation of these blocks of resonant modes in the frequency domain limits modal interaction, thereby minimizing sympathetic vibration. Additionally, known areas of human body sensitivity within this low frequency domain are stated. Lastly, known vibration inputs are identified. This process is cognizant of these inputs and avoids overlapping with the vehicle resonant modes to provide further insurance of minimal modal interaction.
Technical Paper

From Painted “Scrap” to Painted Production Parts

2000-03-06
2000-01-0024
Saturn currently injection molds and paints PPE+PA66 exterior body panels in its Spring Hill, TN facility. These manufacturing operations result in a continuous stream of waste material that needs to be responsibly and economically managed. This paper will summarize the process that General Motors and Saturn used to evaluate and validate the use of post-industrial painted PPE+PA66 reprocessed material in Saturn and General Motors' wheel trim applications (wheel covers). Not only did this project increase the amount of recycled content in General Motors' vehicles, but it also provided Saturn Corporation with a favored outlet for an internal waste stream.
Technical Paper

The Effects of Head Gasket Geometry on Engine-Out HC Emissions from S.I. Engines

1999-10-25
1999-01-3580
This study evaluated multi-layer steel and composite head gaskets of various thicknesses (0.43 to 1.5 mm) and fire-ring diameters to determine the influence of head gasket crevices on engine-out hydrocarbon (HC) emissions. The upper limit in the percent reduction in HC emissions from gasket-design modifications is estimated to be about 15%. At part-load conditions, the lowest HC emissions were measured for head-gasket thickness of about 1 mm. Significantly smaller thicknesses of the order of 0.4 mm result in an increase in HC emissions. Substantial hydrocarbon-emissions advantage may be realized by minimizing the gasket-to-cylinder bore offset.
Technical Paper

Sound Quality of Impulsive Noises: An Applied Study of Automotive Door Closing Sounds

1999-05-17
1999-01-1684
This paper discusses four general attributes which quantify the character of an impulsive sound event. These attributes include the time duration, amplitude and frequency content of the impulsive noise. A three dimensional plot relating time, frequency and amplitude have been developed for the presentation of the measured data. This format allows graphic illustration of the noise event, providing fast interpretation and communication of the measured sound. Application of this methodology to the sound of an automotive door closing event is presented here. Representative door closing sound events are analyzed, with correlation presented between the attributes above to dynamic events of the physical hardware within the door and vehicle systems. Modifications of the door-in-white, internal door hardware, seal systems and additional content are investigated for their effect on the sound quality of the door closing event. Finally, recommended values for these attributes are presented.
Technical Paper

Form vs. Function: A Systems Approach to Achieving Harmony

1999-03-01
1999-01-1266
Today's world places increased emphasis on society's members to know more, to do more, to see more. Increasingly, information is thrown to the consumer that he/she has to process almost continually, regardless of their surroundings. Due to this heightened need, the customer is becoming increasingly perceptive of their vehicle surroundings, expecting their vehicle to be an extension of their home and/or office, to assist in getting things done in an environment that is as convenient and comfortable as their primary workplace. Similarly, there is also increased emphasis on vehicles to be styled so that they are visually appealing, so that all the parts work as a whole to make the environment as enjoyable as consumers' most pleasant surroundings outside the vehicle.
Technical Paper

Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques

1999-03-01
1999-01-0364
The strain-life approach is now commonly used for fatigue life analysis and predictions in the ground vehicle industry. This approach requires the use of material properties obtained from strain-controlled uniaxial fatigue tests. These properties include fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), fatigue ductility exponent (c), cyclic strength coefficient (K′), and cyclic strain hardening exponent (n′). To obtain the aforementioned properties for the material, raw data from stable cyclic stress-strain loops are fitted in log-log scale. These data include total, elastic and plastic strain amplitudes, stress amplitude, and fatigue life. Values of the low cycle fatigue properties (σf′, b, εf′, c) determined from the raw data depend on the method of measurement and fitting. This paper examines the merits and influence of using different measurement and fitting methods on the obtained properties.
Technical Paper

An Economic and Environmental Life Cycle Evaluation of 100% Regrind ABS for Automotive Parts

1998-11-30
982196
The use of regrind acrylonitrile-butadiene-styrene (ABS) for automotive parts and components results in two types of financial savings. The first is the shared monetary savings between General Motors and the molder for the difference in the virgin resin price versus price of the ABS regrind. The second is a societal energy savings seen in the life cycle of virgin ABS versus reground ABS. An added benefit is the preservation of natural resources used to produce virgin ABS.
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

Investigation of Fluid Flow Through a Vane Pump Flow Control Valve

1995-04-01
951113
The recent development of a new vane-type pump for power steering applications involved paying special attention to the fluid flow dynamics within the pump casing, especially in the flow control or supercharge region, where excess pump fluid flow is diverted to the intake region. Durability testing of initial designs revealed the presence of cavitation damage to the pump casing in the supercharging region. Subsequent Computational Fluid Dynamics (CFD) analyses as well as experimental Flow Visualization studies aided in resolving the cavitation-damage problem. The purpose of this paper is to describe the processes used in the CFD analyses and flow visualization studies. A two-dimensional (2D) convergence study was conducted to determine the CFD meshing requirements across the small orifice at the intersection of the flow-control valve and the supercharge port. An iterative procedure was employed to determine the operating position of the flow-control valve.
Technical Paper

Glass Drop Design for Automobile Windows - Design of Glass Contour, Shape, Drop Motion, and Motion Guidance Systems

1995-04-01
951110
This paper presents a new computerized approach for designing the automobile window glass contour, the glass drop motion, and the regulator systems. The three-dimensional geometrical relationship of the glass contour, the drop path, and its guidance system have been studied. Methods for barrel and helical drops are presented for optimizing the glass profile and drop path trajectories. Criteria for perfecting the glass contour are developed for shaping the profile of the vehicle clay model. Methods for correcting the glass contour and shape are presented. Examples are provided to illustrate how to improve the design. This approach integrates the development works of glass contour, drop motion and regulator systems. Through this design approach the window glass can fit and move perfectly in the door assembly.
X