Refine Your Search

Topic

Author

Search Results

Journal Article

Fast and Efficient Detection of Shading of the Objects

2015-04-14
2015-01-0371
The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
Technical Paper

Least-Enthalpy Based Control of Cabin Air Recirculation

2015-04-14
2015-01-0372
The vehicle air-conditioning system has significant impact on fuel economy and range of electric vehicles. Improving the fuel economy of vehicles therefore demand for energy efficient climate control systems. Also the emissions regulations motivate the reduced use of fuel for vehicle's cabin climate control. Solar heat gain of the passenger compartment by greenhouse effect is generally treated as the peak thermal load of the climate control system. Although the use of advanced glazing is considered first to reduce solar heat gain other means such as ventilation of parked car and recirculation of cabin air also have impetus for reducing the climate control loads.
Technical Paper

Cabin Air Humidity Model and its Application

2015-04-14
2015-01-0369
In addition to the thermal comfort of the vehicle occupants, their safety by ensuring adequate visibility is an objective of the automotive climate control system. An integrated dew point and glass temperature sensor is widely used among several other technologies to detect risk of fog formation on the cabin side (or inner) surface of the windshield. The erroneous information from a sensor such as the measurement lag can cause imperfect visibility due to the delayed response of the climate control system. Also the high value, low cost vehicles may not have this sensor due to its high cost. A differential equation based model of the cabin air humidity is proposed to calculate in real-time specific humidity of the passenger compartment air. The specific humidity is used along with the windshield surface temperature to determine relative humidity of air and therefore, the risk of fog formation on the interior surface of a windshield.
Technical Paper

Application of Principle Component Analysis to Low Speed Rear Impact - Design for Six Sigma Project at General Motors

2009-04-20
2009-01-1204
This study involves an application of Principal Component Analysis (PCA) conducted in support of a Design for Six Sigma (DFSS) project. Primary focus of the project is to optimize seat parameters that influence Low Speed Rear Impact (LSRI) whiplash performance. During the DFSS study, the project team identified a need to rank order critical design factors statistically and establish their contribution to LSRI performance. It is also required to develop a transfer function for the LSRI rating in terms of test response parameters that can be used for optimization. This statistical approach resulted in a reliable transfer function that can applied across all seat designs and enabled us to separate vital few parameters from several many.
Technical Paper

Shudder Durability of a Wet Launch Clutch Part I – Thermal Study and Development of Durability Test Profile

2009-04-20
2009-01-0329
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. A test bench was designed. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle–parallel) and two separator plate conditions (nitrided and non–nitrided) were considered. Considerable improvement in performance was seen by changing from CVT fluid* to DCT fluid*. A thermal analysis based on thermal model predictions and measurement correlations was conducted. Comparisons of clutch configurations with four and five friction plates were done. The waffle and radial groove pattern showed better heat transfer than the waffle–parallel groove pattern.
Journal Article

Superelement, Component Mode Synthesis, and Automated Multilevel Substructuring for Rapid Vehicle Development

2008-04-14
2008-01-0287
This paper presents the new techniques/methods being used for the rapid vehicle development and system level performance assessment. It consists of two parts: the first part presents the automated multilevel substructuring (AMLS) technique, which greatly reduces the computational demands of larger finite element models with millions of degrees of freedom(DOF) and extends the capabilities to higher frequencies and higher level of accuracy; the second part is on the superelement in conjunction with the Component Mode Synthesis (CMS) and also Automated Component Mode Synthesis (ACMS) techniques. In superelement, a full vehicle model is divided into components such as Body-in-white, Front cradle/chassis, Rear cradle/chassis, Exhaust, Engine, Transmission, Driveline, Front suspension, Rear suspension, Brake, Seats, Instrument panel, Steering system, tires, etc. with each piece represented by reduced stiffness, mass, and damping matrices.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Optimization of HVAC Temperature Regulation Curves with modeFrontier and Fluent

2007-04-16
2007-01-1397
Simultaneously obtaining a linear temperature control curve along with the correct temperature stratification at module outlets is one of the most difficult tasks in developing an automotive HVAC module. Traditionally, Computational Fluid Dynamics (CFD) development of temperature control linearity has been accomplished by iteratively adjusting the location, size and orientation of baffles which redirect warm and cold airstreams. This approach demands considerable interaction from the engineer in building the computational mesh, defining boundary and operating conditions and post processing the simulation results. The present study was conducted to investigate the optimization of HVAC temperature regulation curves using the multi-objective optimization code modeFrontier (1, 3) in conjunction with CFD code, Fluent (2). An auxiliary HVAC module was selected for the present study.
Technical Paper

From Algorithms to Software - A Practical Approach to Model-Driven Design

2007-04-16
2007-01-1622
The value of model-based design has been attempted to be communicated for more than a decade. As methods and tools have appeared and disappeared from a series of different vendors it has become apparent that no single vendor has a solution that meets all users’ needs. Recently standards (UML, MDA, MOF, EMF, etc.) have become a dominant force and an alternative to vendor-specific languages and processes. Where these standards have succeeded and vendors have failed is in the realization that they do not provide the answer, but instead provide the foundation to develop the answer. It is in the utilization of these standards and their capability to be customized that companies have achieved success. Customization has occurred to fit organizations, processes, and architectures that leverage the value of model-driven design.
Technical Paper

Virtual Manufacturing of Automotive Body Side Outers Using Advanced Line Die Forming Simulation

2007-04-16
2007-01-1688
As a virtual manufacturing press line, line die forming simulation provides a full range math-based engineering tool for stamping die developments of automotive structure and closure panels. Much beyond draw-die-only formability analysis that has been widely used in stamping simulation community during the last decade, the line die formability analysis allows incorporating more manufacturing requirements and resolving more potential failures before die construction and press tryout. Representing the most difficult level in formability analysis, conducting line die formability analysis of automotive body side outers exemplifies the greatest technological challenge to stamping CAE community. This paper discusses some critical issues in line die analysis of the body side outers, describes technical challenges in applications, and finally demonstrates the impact of line die forming simulation on the die development.
Technical Paper

Custom Real-Time Interface Blockset Development in Matlab/Simulink for On-Target Rapid Prototyping

2006-04-03
2006-01-0169
In GM R&D Powertrain/Engine Control Group, rapid prototyping controller (RPC) systems with Matlab/Simulink are used extensively to design, simulate and implement advanced engine control algorithms and models. However, those RPC systems use powerful microprocessors with large amounts of RAM contrary to engine control modules (ECM) in production vehicles. Therefore, a thorough analysis on the comparatively much more complicated algorithms and models cannot be performed during the research stage, since there are not enough tools to enable the smooth transition from Matlab/Simulink to the production type processor. The Real-Time Interface (RTI) Blockset for a production like microprocessor would close the transition gap between rapid prototyping controller systems and production type microprocessors by leveraging the power and popularity of Matlab/Simulink in control engineering world and automatic code generation tools.
Technical Paper

Overhead Sliding Video Screen Monitor

2006-04-03
2006-01-1486
A novel longitudinally sliding overhead video screen monitor was developed to address consumer needs for vehicles equipped with rear seat entertainment and long length sunroofs. Long length sunroof openings in vehicles are causing engineers to mount video screen monitors in locations other than the overhead. Typically, they are mounted on the floor console or on the back of front seat head restraints. Floor console mounted video screen monitors generally do not provide a comfortable viewing distance or angle for second and third row occupants. Head restraint mounted video monitors cause issues with seat shake and two monitors adds to the vehicle cost unnecessarily. The mountable sliding video monitor assembly comprises of a video display screen, brackets for mounting the monitor, a pair of tracks that are movable with respect to each other, a series of ball bearings, and a roof mounting bracket. The inner main track is adapted for mounting the pair of tracks to the vehicle.
Technical Paper

High Performance Vehicle Chassis Structure for NVH Reduction

2006-04-03
2006-01-0708
The main objective of this paper was to determine if the vehicle performance can be maintained with a reduced mass cradle structure. Aluminum and magnesium cradles were compared with the baseline steel cradle. First, the steel chassis alone is analyzed with the refined finite element model and validated with experimental test data for the frequencies, normal modes, stiffnesses and the drive-point mobilities at various attachment mount/bushing locations. The superelement method in conjunction with the component mode synthesis (CMS) technique was used for each component of the vehicle such as Body-In-White, Instrument Panel, Steering Column Housing & Wheel, Seats, Cradles, CRFM, etc. After assemblage of all the superelements, analysis was carried out by changing the front and rear cradle gauges and the material properties. The drive-point mobility response was computed at various locations and the noise (sound pressure) level was calculated at the driver and passenger ears.
Technical Paper

Tuning Guide for Deflected-Disc Suspension Dampers

2006-04-03
2006-01-1380
This paper presents an empirical-based model which explains the force-deflection characteristics of disc stacks commonly used in automotive suspension dampers. The model provides tools for comparing different disc stacks to understand their effect on damper performance. Load-deflection data is presented on a variety of discs and combinations of discs. The data is analyzed to show how the diameter, thickness and relative position of discs in a stack can affect the stack stiffness throughout the range of disc deflections. A model is developed to show how changes in the disc stack will affect damper performance at different velocities. An example is provided that shows predicted changes in disc stack force-deflection characteristics and the resulting changes in a damper force-velocity curve. Ride results are also presented that confirm the validity of the model.
Technical Paper

Music Analogy: An Alternative Strategy for Sound Quality Requirements

2005-05-16
2005-01-2477
In recent years a predominant strategy for setting sound quality (SQ) requirements has been the sensory correlation approach (also called sensory evaluation or sensory science). Some users of this approach have reported their progress in numerous papers. Other SQ practitioners have made presentations on specific topics that show the linkage to music and musical notation. These specific links point to an alternative general strategy - “the Music Analogy for Sound Quality.” This paper begins by comparing the general methods of the music analogy and sensory correlation. Some major differences will be identified and implications discussed. Some existing specific tools for the music analogy will be identified as well as some gaps that need to be filled. Finally, reasons will be presented concerning why the music analogy should be considered when developing sound quality requirements.
Technical Paper

SEA Modeling of A Vehicle Door System

2005-05-16
2005-01-2427
The Door system is one of the major paths for vehicle interior noise under a variety of load conditions. In this paper we consider the elements of the door lower (excluding glass) in terms of noise transmission. Passenger car doors are comprised of the outer skin, door cavity, door inner sheet metal, vapor barrier, and interior trim. Statistical Energy Analysis (SEA) models must effectively describe these components in terms of their acoustic properties and capture the dominant behaviors relative to the overall door system. In addition, the models must interface seamlessly with existing vehicle level SEA models. SEA modeling techniques for the door components are discussed with door STL testing and model correlation results.
Technical Paper

A Subsystem Crash Test Methodology for Retention of Convenience Organizer Equipment System in Rear Impact

2005-04-11
2005-01-0735
Any equipment system or vehicle component like the Convenience Organizer storage system needs to be retained within the cargo compartment without intruding into the passenger compartment for occupant safety during a high speed impact. This paper outlines a test method to evaluate the retention of such a system in a rear impact environment. The method utilizes a low speed barrier to simulate a high speed RMB (Rear Moving Barrier) impact. The content of the low speed RMB impact test setup was developed utilizing DYNA3D analytical simulation results from a full vehicle model subjected to high-speed RMB impact. The retention of the equipment developed through this test method was confirmed on a full scale rear impact test.
Technical Paper

On the Potential of Low Heat Rejection DI Diesel Engines to Reduce Tail-Pipe Emissions

2005-04-11
2005-01-0920
Heat transfer to the combustion chamber walls constitutes a significant portion of the overall energy losses over the working cycle of a direct injection (DI) diesel engine. In the last few decades, numerous research efforts have been devoted to investigating the prospects of boosting efficiency by insulating the combustion chamber. Relatively few studies have focused on the prospects of reducing emissions by applying combustion chamber insulation. A main purpose of this study is to assess the potential of reducing in-cylinder soot as well as boosting aftertreatment performance by means of partially insulating the combustion chamber. Based on the findings from a conceptual study, a Low Heat Rejection (LHR) design, featuring a Nimonic 80A insert into an Aluminum piston, was developed and tested experimentally at various loads in a single-cylinder Hatz-engine.
Technical Paper

Model-Driven Product Line Software Development Process

2005-04-11
2005-01-1288
The past 10 years have created such buzzwords as “model-based development” and “auto-code generation”. Conveniently absent from the tool literature on model-based development are the equally, or more important concepts of Software Architecture and Process. When developing product line software, the process and architecture form a critical foundation to base reusable products and components. The development process can no longer be viewed as “model-based”, but rather as “model-driven”, due to the reliance on the models as the source artifact as opposed to the creators of the source artifacts. A model-driven product line software development process allows capturing of behavior, for commonality across different products, and having a different implementation for a specific product release.
Technical Paper

A Multi-hop Mobile Networking Test-bed for Telematics

2005-04-11
2005-01-1484
An onboard vehicle-to-vehicle multi-hop wireless networking system has been developed to test the real-world performance of telematics applications. The system targets emergency and safety messaging, traffic updates, audio/video streaming and commercial announcements. The test-bed includes a Differential GPS receiver, an IEEE 802.11a radio card modified to emulate the DSRC standard, a 1xRTT cellular-data connection, an onboard computer and audio-visual equipment. Vehicles exchange data directly or via intermediate vehicles using a multi-hop routing protocol. The focus of the test-bed is to (a) evaluate the feasibility of high-speed inter-vehicular networking, (b) characterize 5.8GHz signal propagation within a dynamic mobile ad hoc environment, and (c) develop routing protocols for highly mobile networks. The test-bed has been deployed across five vehicles and tested over 400 miles on the road.
X