Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Influence of Spot Welding Parameters on Al-Si Coated 22MnB5 for Automotive Application

2017-11-07
2017-36-0225
The application of press hardening steels (PHS) Al-Si coating has been increasing in body in white vehicles as an approach to meet the demands of safety and CO2 reduction regulations. The vehicle structures with PHS largely depend on the integrity and the mechanical performance of the spots weld. During the spot welding process, intermetallic phase may appear in function of the chemical composition of the steel and coating. One of these intermetallics is the Fe-Al phase which brittleness decreases the strength of the weld joint. In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the influence of the welding parameters of single-lap joints PHS - 22MnB5 steel grade.
Technical Paper

Evaluation of Aluminum Wheels with Focus on Specification Materials and Manufacturing

2011-10-04
2011-36-0267
The growing need to avoid failures in vehicle components have become the methods of quality control of manufacturing processes more efficient and accurate, especially in safety components like automotive wheels. The aim of this work is examines the efficiency of aluminum-silicon specifications related to wheel quality for avoiding the poor results obtained in impact and fatigue tests as result of improper settings in the chemical composition and manufacture process. It is evaluated mainly the content of magnesium in aluminum alloys and certified the correct degree of silicon modification in the microstructure on the performance of these wheels. The test results indicate that even with the chemical composition parameters specified by the standard, the technical validation of the product may not be adequate.
Technical Paper

Influence of residual stresses in aluminum wheel design

2008-10-07
2008-36-0139
The current study shows important results obtained by a new technique of residual stress virtual evaluation in automotive components for improving the development and quality of new products, aiming the structural performance, mass and cost reductions. The approaching those virtual results were adjusted by metallurgic data obtained in metallography, mechanical and chemical analysis. As part of this proposal, an automotive aluminum wheel belong to current production was evaluated in accordance with data acquired in the wheel manufacturing process. It was taking in account the real information of casting process parameters and the metallurgic information obtained in laboratorial tests. In this work, the results show that product residual stresses shall be considerate and evaluated during design phases as improving proposal, new technical concerns and quality improving.
Technical Paper

Powder Metallurgy Application in Automotive Components - Valve Seat Inserts

2001-03-05
2001-01-3953
This work presents aspects related to research and development of high-speed steels for valve seat inserts application. Five series of materials were evaluated: high speed steel M3/2 infiltrated with copper during sintering; high speed steel M3/2 with Cu3P addition; high speed steel M3/2 with Cu3P addition and further copper infiltrated during sintering; high speed steel M3/2 mixed with iron powder; high speed steel M3/2 mixed with iron powder and niobium carbide. The physical and mechanical properties of the evaluated high-speed steels are presented in terms of densification, hardness, and radial mechanical strength. These properties are compared according to the materials processing and heat treatment.
X