Refine Your Search

Topic

Author

Search Results

Technical Paper

Comparing the NVH Behaviour of an Innovative Steel-Wood Hybrid Battery Housing Design to an All Aluminium Design

2024-06-12
2024-01-2949
The production of Electric Vehicles (EVs) has a significant environmental impact, with up to 50 % of their lifetime greenhouse gas potential attributed to manufacturing processes. The use of sustainable materials in EV design is therefore crucial for reducing their overall carbon footprint. Wood laminates have emerged as a promising alternative due to their renewable nature. Additionally, wood-based materials offer unique damping properties that can contribute to improved Noise, Vibration, and Harshness (NVH) characteristics. Compared to conventional materials such as aluminium, wooden structures exhibit significantly higher damping properties. In this study, the potential of lightweight wood composites, specifically steel-wood hybrid structures, is investigated as a potential composite material for battery housings for electric vehicles. Experiments have been performed in order to determine the modal parameters, such as natural frequencies and damping ratios.
Technical Paper

Insides to Trustworthy AI-Based Embedded Systems

2024-04-09
2024-01-2014
In an era characterized by the rapid proliferation and advancement of AI-based technologies across various domains, the spotlight is placed on the integration of these technologies into trustworthy autonomous systems. The integration into embedded systems necessitates a heightened focus on dependability. This paper combines the findings from the TEACHING project, which delves into the foundations of humanistic AI concepts, with insights derived from an expert workshop in the field of dependability engineering. We establish the body of knowledge and key findings deliberated upon during an expert workshop held at an international conference focused on computer safety, reliability and security. The dialogue makes it evident that despite advancements, the assurance of dependability in AI-driven systems remains an unresolved challenge, lacking a one-size-fits-all solution.
Technical Paper

A Comprehensive Training Approach for Automotive Cybersecurity Engineering

2024-04-09
2024-01-2800
Cybersecurity assumes a major role in the context of the automotive domain, where both existing and forthcoming regulations are heightening the need for robust security engineering. A significant milestone in advancing cybersecurity within the automotive industry is the release of the first international standard for automotive cybersecurity ISO/SAE 21434:2021 ‘Road Vehicles — Cybersecurity Engineering’. A recently published type approval regulation for automotive cybersecurity (UN R155) is also tailored for member countries of the UNECE WP.29 alliance. Thus, the challenges for embedded automotive systems engineers are increasing while frameworks, tools and shared concepts for cybersecurity engineering and training are scarce.
Technical Paper

Virtual Sensors in Small Engines – Previous Successes and Promising Future Use Cases

2023-10-24
2023-01-1837
Virtual sensing, i.e., the method of estimating quantities of interest indirectly via measurements of other quantities, has received a lot of attention in various fields: Virtual sensors have successfully been deployed in intelligent building systems, the process industry, water quality control, and combustion process monitoring. In most of these scenarios, measuring the quantities of interest is either impossible or difficult, or requires extensive modifications of the equipment under consideration – which in turn is associated with additional costs. At the same time, comprehensive data about equipment operation is collected by ever increasing deployment of inexpensive sensors that measure easily accessible quantities. Using this data to infer values of quantities which themselves are impossible to measure – i.e., virtual sensing – enables monitoring and control applications that would not be possible otherwise.
Technical Paper

Lifecycle Carbon Footprint Calculation of Hand-Held Tool Propulsion Concepts

2023-04-11
2023-01-0553
Following the recent trend in the automotive industry, hybrid and pure electric powertrain systems are more and more preferred over conventional combustion powertrain systems due to their significant potential to reduce greenhouse-gas emissions. Although electric powertrains do not produce direct emissions during their operational time, the indirect emissions over their whole life cycle have to be taken into consideration. In this direction, the carbon footprint due to the electrification of the hand-held power tool industry needs to be examined in the preliminary design phase. In this paper, after defining the carbon footprint calculation framework, assumptions and simplifications used for the calculations, a direct comparison of the total carbon dioxide equivalent (CO2eq) emissions of three equivalent power and range powertrain systems - a combustion-driven, a hybrid-driven, and a cordless electric-driven - is presented.
Technical Paper

A Comparison of Virtual Sensors for Combustion Parameter Prediction of Gas Engines Based on Knock Sensor Signals

2023-04-11
2023-01-0434
Precise prediction of combustion parameters such as peak firing pressure (PFP) or crank angle of 50% burned mass fraction (MFB50) is essential for optimal engine control. These quantities are commonly determined from in-cylinder pressure sensor signals and are crucial to reach high efficiencies and low emissions. Highly accurate in-cylinder pressure sensors are only applied to test rig engines due to their high cost, limited durability and special installation conditions. Therefore, alternative approaches which employ virtual sensing based on signals from non-intrusive sensors retrieved from common knock sensors are of great interest. This paper presents a comprehensive comparison of selected approaches from literature, as well as adjusted or further developed methods to determine engine combustion parameters based on knock sensor signals. All methods are evaluated on three different engines and two different sensor positions.
Technical Paper

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

2022-12-22
2022-01-7087
As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity, Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. Such a threat modeling methodology must conform to the Threat Analysis and Risk Assessment (TARA) framework of ISO/SAE 21434. Conversely, existing threat modeling methods enumerate isolated threats disregarding the vehicle’s design and connections. Consequently, they neglect the role of attack paths from a vehicle’s interfaces to its assets.
Technical Paper

High Mileage Emission Deterioration Factors from Euro 6 Positive and Compression Ignition Vehicles

2022-08-30
2022-01-1028
The current European fleet of vehicles is ageing and lifetime mileages are rising proportionally. Consequently, a substantial fraction of the vehicle fleet is currently operating at mileages well beyond current durability legislation (≤ 160,000 km). Emissions inventories and models show substantial increases in emissions with increasing mileage, but knowledge of the effect of emissions control system deterioration at very high mileages is sparse. Emissions testing has been conducted on matched pairs (or more) of diesel and gasoline (and CNG) vehicles, of low and high mileage, supplementing the results with in-house data, in order to explore high mileage emission deterioration factors (DF). The study isolated, as far as possible, the effect of emissions deterioration with mileage, by using nominally identical vehicle models and controlling other variables.
Technical Paper

Construction and Test of Wireless Remote Control System for Self-Driving Car

2022-03-29
2022-01-0064
Aiming at the test safety problems in the early stage of self-driving cars development, firstly the virtual vehicle on-board CAN data acquisition module of the present project was designed based on virtual LabVIEW. Then a wireless remote control system for the self-driving car was constructed, which integrated the built virtual vehicle on-board CAN data acquisition system, the remote real-time image monitoring module and the remote upper computer control module based on ZigBee wireless transmission. It can execute the environmental awareness training and continuous and complex motion manipulation testing of the vehicle without relying on the driver, which can solve the safety problems in the tests of initial development of self-driving cars. Finally, the four-wheel independent steering electric vehicle was used as the self-driving test vehicle, and the wireless remote control system was tested on the double lane change type path and S-type path.
Technical Paper

On-Board Spark Plug Center Electrode Temperature Measurement with Wireless Data Transmission

2022-03-29
2022-01-0565
To increase reliability and the maintenance interval of an internal combustion engine while operating it with the lowest possible emissions, spark plug wear must be reduced. In this context, information about the spark plug center and the ground electrode temperature is key. Several measurement devices have been developed that measure the temperature of spark plug electrodes. The great challenge is to measure the temperature of the center electrode; on the one hand, the measurement device must be insulated and capable of withstanding the high voltage of the ignition system, and on the other hand, the device should not influence the ignition system. All previously studied devices presented in this paper have in common that major reconstruction of the ignition system and/or spark plugs whose design is very different from the standard engine spark plug were necessary.
Technical Paper

Design and Experimental Characterization of a Parallel-Hybrid Powertrain for Hand-held Tools

2022-03-29
2022-01-0604
On the basis of small hybrid powertrain investigations in hand-held power tools for fuel consumption and emissions reduction, the prototype hybrid configuration of a small single-cylinder four-stroke internal combustion engine together with a brushless DC electric motor is built and measured on the testbench in terms of efficiency and emissions but also torque and power capabilities. The onboard energy storage system allows the combustion engine electrification for controlling the fuel amount and the combustion behavior while the electric motor placement instead of the pull-start and flywheel allows for start-stop of the system and load point shifting strategy for lower fuel consumption. The transient start-up results as well as the steady-state characterization maps of the system can set the limits on the fuel consumption reduction for such a hybrid tool compared with the baseline combustion-driven tool for given load cycle characteristics.
Technical Paper

Development of a Virtual Sensor to Predict Cylinder Pressure Signal Based on a Knock Sensor Signal

2022-03-29
2022-01-0627
Virtual sensing refers to the processing of desired physical data based on measured values. Virtual sensors can be applied not only to obtain physical quantities which cannot be measured or can only be measured at an unreasonable expense but also to reduce the number of physical sensors and thus lower costs. In the field of spark ignited internal combustion engines, the virtual sensing approach may be used to predict the cylinder pressure signal (or characteristic pressure values) based on the acceleration signal of a knock sensor. This paper presents a method for obtaining the cylinder pressure signal in the high-pressure phase of an internal combustion engine based on the measured acceleration signal of a knock sensor. The approach employs a partial differential equation to represent the physical transfer function between the measured signal and the desired pressure. A procedure to fit the modeling constants is described using the example of a large gas engine.
Journal Article

Investigation on transient behavior and SoC balancing of a hybrid powertrain hand-held tool

2022-01-09
2022-32-0025
A transient behavior investigation of a hybrid hand-held tool is carried out on near real load conditions, through a hybrid experimental and simulative study. As this study focuses on handheld tools with a varied or transient load operation like chainsaws and brush cutters, a use of a blower tool as a test-carrier and a throttle body implementation on its blower air pipe adds a controllable braking mechanism. This allows for driving varied load cycles without the need of a testbench. Experimental investigation takes place at both start-up, shut-down and load conditions and for different drive control and commutation modes of electric motor. The controller characterization and parameter selection are done. After the load cycles are driven on the test-carrier, the characterizing data are transferred to the MATLAB and Simulink simulation model to correct and calibrate its transient behavior.
Technical Paper

An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security

2020-04-14
2020-01-0145
The automotive domain has seen safety engineering at the forefront of the industry’s priorities for the last decade. Therefore, additional safety engineering efforts, design approaches, and well-established safety processes have been stipulated. Today many connected and automated vehicles are available and connectivity features and information sharing are increasingly used. This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles.
Technical Paper

Evaluation of Methods for Identification of Driving Styles and Simulation-Based Analysis of their Influence on Energy Consumption on the Example of a Hybrid Drive Train

2020-04-14
2020-01-0443
Due to current progresses in the field of driver assistance systems and the continuously growing electrification of vehicle drive trains, the evaluation of driver behavior has become an important part in the development process of modern cars. Findings from driver analyses are used for the creation of individual profiles, which can be permanently adapted due to ongoing data processing. A benefit of data-based dynamic control systems lies in the possibility to individually configure the vehicle behavior for a specific driver, which can contribute to increasing customer acceptance and satisfaction. In this way, an optimization of the control behavior between driver and vehicle and the resulting mutual system learning and -adjustment hold great potential for improvements in driving behavior, safety and energy consumption.
Technical Paper

A Smart Icing Detection System for Any Location on the Outer Aircraft Surface

2019-06-10
2019-01-1931
Given approximately one million small and light aircraft in operation worldwide, icing detection and icing quantification of in-flight icing are still an open research topic. Despite technical means are available to de-ice on ground, there is a lack of a suitable control system based on sensor data to de-ice while the aircraft is airborne. Most often, it is still task of the pilot to visually inspect the icing status of the airfoil and/or other critical parts of the aircraft such as engine air intakes, which distracts the flight crew from flying the aircraft especially in IMC conditions. Based on preliminary simulation and tests in 2014 in a collaborative research project lasting from 2015 until 2018, the technology of energy self-sustaining, wireless, self-adhesive smart sensors for industrial sensing in an aerodynamically critical environment (i.e. wind turbines) was further investigated to fulfil general aviation requirements.
Technical Paper

Robot-Based Fast Charging of Electric Vehicles

2019-04-02
2019-01-0869
Automated, conductive charging systems enable both, the transmission of high charging power for long electric driving distances as well as comfortable and safe charging processes. Especially by the use of heavy and unhandy cables for fast charging, these systems offer user friendly vehicle charging - in particularly in combination with autonomously driving and parking vehicles. This paper deals with the definition of requirements for automated conductive charging stations with standard charging connectors and vehicle inlets and the development of a fully-automated charging robot for electric and plug-in hybrid vehicles. In cooperation with the project partners BMW AG, MAGNA Steyr Engineering, KEBA AG and the Institute of Automotive Engineering at Graz University of Technology, the development and implementation of the prototype took place in the course of a governmental funded research project titled “Comfortable Mobility by Technology Integration (KoMoT)”.
Technical Paper

Highly Dynamic Intake and Exhaust Back Pressure Control

2019-01-09
2019-26-0147
Measuring emissions of internal combustion engines-not only at steady-state conditions, but also with highly dynamic test cycles-is an important issue in modern engine development. Due to the fact that ambient conditions have an essential influence on power and emissions of internal combustion engines, test beds used for such measurements typically incorporate intake air and exhaust back pressure control for reasons of repeatability, accuracy and comparability. As test cycle dynamics get faster and legal pressure tolerances get narrower, pressure control becomes more demanding and simple PI control schemes are pushed to their limits; therefore, more sophisticated control schemes are necessary. In this paper, a linearised model is first derived and then used to both simplify and optimise PI controller tuning. This is done by means of frequency domain methods. Limitations to such controllers and possible approaches to overcome them are discussed.
Technical Paper

Artificial Neural Network Based Predictive Real Drive Emission and Fuel Economy Simulation of Motorcycles

2018-10-30
2018-32-0030
As the number of different engine and vehicle concepts for powered-two wheelers is very high and will even rise with hybridization, the simulation of emissions and fuel consumption is indispensable for further development towards more environmentally friendly mobility. In this work, an adaptive artificial neural network based predictive model for emission and fuel consumption simulation of motorcycles operated in real world conditions is presented. The model is developed in Matlab and Simulink and is integrated into a longitudinal vehicle dynamic simulation whereby it is possible to simulate various and not yet measured test cycles. Subsequently, it is possible to predict real drive emissions RDE and on-road fuel consumption by a minimum of previous measurement effort.
Technical Paper

Ion Current Comparison in Small, Fast Running Gasoline Engines for Non-Automotive Applications

2018-10-30
2018-32-0077
Small engines for non-automotive applications include 2-stroke and 4-stroke gasoline engine concepts which have a reduced number of sensors due to cost and packaging constraints. In order to cope with future emission regulations, more sophisticated engine control and monitoring becomes mandatory. Therefore, a cost-effective way has to be found to gain maximum information from the existing sensors and actuators. Due to an increasing bio-fuel share in the market, the detection of bio-fuel content is necessary to guarantee a stable combustion by adapting the injection and ignition control strategy. Meaningful information about the combustion can be retrieved from combustion chamber ion current measurements. This paper proposes a general overview of combustion process monitoring in different engine concepts by measuring the ion current during combustion.
X