Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Improvement of the EGR Dilution Tolerance in Gasoline Engines by the Use of a HSASI Pre-Chamber Spark Plug

2023-10-24
2023-01-1805
Charge dilution in gasoline engines reduces NOx emissions and wall heat losses by the lower combustion temperature. Furthermore, under part load conditions de-throttling allows the reduction of pumping losses and thus higher engine efficiency. In contrast to lean burn, charge dilution by exhaust gas recirculation (EGR) under stoichiometric combustion conditions enables the use of an effective three-way catalyst. A pre-chamber spark plug with hot surface-assisted spark ignition (HSASI) was developed at the UAS Karlsruhe to overcome the drawbacks of charge dilution, especially under part load or cold start conditions, such as inhibited ignition and slow flame speed, and to even enable a further increase of the dilution rate. The influence of the HSASI pre-chamber spark plug on the heat release under EGR dilution and stoichiometric conditions was investigated on a single-cylinder gasoline engine.
Technical Paper

Virtual Sensors in Small Engines – Previous Successes and Promising Future Use Cases

2023-10-24
2023-01-1837
Virtual sensing, i.e., the method of estimating quantities of interest indirectly via measurements of other quantities, has received a lot of attention in various fields: Virtual sensors have successfully been deployed in intelligent building systems, the process industry, water quality control, and combustion process monitoring. In most of these scenarios, measuring the quantities of interest is either impossible or difficult, or requires extensive modifications of the equipment under consideration – which in turn is associated with additional costs. At the same time, comprehensive data about equipment operation is collected by ever increasing deployment of inexpensive sensors that measure easily accessible quantities. Using this data to infer values of quantities which themselves are impossible to measure – i.e., virtual sensing – enables monitoring and control applications that would not be possible otherwise.
Technical Paper

Zero-dimensional Modeling of Flame Propagation During Combustion of Natural Gas/Hydrogen Mixtures

2023-04-11
2023-01-0190
To achieve global climate goals, greenhouse gas emissions must be drastically reduced. The energy and transportation sectors are responsible for about one third of the greenhouse gases emitted worldwide, and they often use internal combustion engines (ICE). One effective way to decarbonize ICEs may be to replace carbon-containing fossil fuels such as natural gas entirely, or at least partially, with hydrogen. Cost-effective development of sustainable combustion concepts for hydrogen and natural gas/hydrogen mixtures in ICEs requires the intensive use of fast and robust simulation tools for prediction. The key challenge is appropriate modeling of flame front propagation. This paper evaluates and applies different approaches to modeling laminar flame speeds from the literature. Both appropriate models and reaction kinetic calculations are considered.
Technical Paper

On-Board Spark Plug Center Electrode Temperature Measurement with Wireless Data Transmission

2022-03-29
2022-01-0565
To increase reliability and the maintenance interval of an internal combustion engine while operating it with the lowest possible emissions, spark plug wear must be reduced. In this context, information about the spark plug center and the ground electrode temperature is key. Several measurement devices have been developed that measure the temperature of spark plug electrodes. The great challenge is to measure the temperature of the center electrode; on the one hand, the measurement device must be insulated and capable of withstanding the high voltage of the ignition system, and on the other hand, the device should not influence the ignition system. All previously studied devices presented in this paper have in common that major reconstruction of the ignition system and/or spark plugs whose design is very different from the standard engine spark plug were necessary.
Journal Article

Extension of the Lean Limit of Gasoline Engines Under Part Load by Using Hot Surface Assisted Spark Ignition (HSASI)

2022-01-09
2022-32-0051
Charge dilution by lean-burn is one way to increase the efficiency of spark ignition engines while reducing NOx emissions. This work focuses on increasing the flammability of lean mixtures inside a passive pre-chamber spark plug by elevating its temperature with the help of a controllable hot surface integrated into the pre-chamber. Thus, an extension of the lean limit under part load is aimed for. A pre-chamber spark plug prototype with an integrated, controllable glow plug was developed, called Hot Surface Assisted Spark Ignition (HSASI). Experimental investigations were conducted on a single-cylinder engine at the Karlsruhe University of Applied Sciences. Operating modes with an active glow plug (HSASI) and a non-active glow plug were compared. The lean limit for both operation modes were determined under part load. NOx, CO and THC emissions were measured for different air-fuel equivalence ratios λ. The lean limit is extended by more than 0.1 in λ at low loads with HSASI operation.
Technical Paper

Experimental Investigation of the Influence of Ignition System Parameters on Combustion in a Rapid Compression-Expansion Machine

2020-04-14
2020-01-1122
Lean burn combustion concepts with high mean effective pressures are being pursued for large gas engines in order to meet future stringent emission limits while maintaining high engine efficiencies. Since severe boundary conditions for the ignition process are encountered with these combustion concepts, the processes of spark ignition and flame initiation are important topics of applied research, which aims to avoid misfiring and to keep cycle-to-cycle combustion variability within reasonable limits. This paper focuses on the fundamental investigation of early flame kernel development using different ignition system settings. The investigations are carried out on a rapid compression-expansion machine in which the spark ignition process can be observed under engine-like pressure and excess air ratio conditions while low flow velocities are maintained.
Technical Paper

Analysis of a Prechamber Ignited HPDI Gas Combustion Concept

2020-04-14
2020-01-0824
High-pressure direct injection (HPDI) of natural gas into the combustion chamber enables a non-premixed combustion regime known from diesel engines. Since knocking combustion cannot occur with this combustion process, an increase in the compression ratio and thus efficiency is possible. Due to the high injection pressures required, this concept is ideally suited to applications where liquefied natural gas (LNG) is available. In marine applications, the bunkering of and operation with LNG is state-of-the-art. Existing HPDI gas combustion concepts typically use a small amount of diesel fuel for ignition, which is injected late in the compression stroke. The diesel fuel ignites due to the high temperature of the cylinder charge. The subsequently injected gas ignites at the diesel flame. The HPDI gas combustion concept presented in this paper is of a monovalent type, meaning that no fuel other than natural gas is used.
Technical Paper

Influence of Ethanol and 2-Butanol Blended Fuels on Combustion and Emissions in a Small Displacement Two Stroke Engine

2018-10-30
2018-32-0044
Small displacement two-stroke engines are cheap and low-maintenance propulsion systems and commonly used in scooters, recreation vehicles and handheld power-tools. The restriction by emission legislation and the increasing environmental awareness of end users as well as decreasing energy resources cause a rethinking in the development of propulsion systems and fuels in these fields. Despite recent improvements of electric powertrains, two stroke engines are the challenged propulsion system in high performance handheld power tools at the moment. The reasons are the extraordinary high power to weight ratio of two-stroke engines, the high energy density of liquid fuels and the reliability of the product with respect to extreme ambient conditions. Nevertheless, further improvements on emissions and fuel consumption of small displacement two-stroke engines can be realized.
Technical Paper

Combustion Analysis with Residual Gas as a Design Parameter for Two-Stroke Engines

2018-10-30
2018-32-0045
In a variety of applications, two-stroke engines assert their usage as a propulsion unit, for examples in off-road vehicles, scooters, hand-held power tools and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. Furthermore, two-stroke engines convince with high durability and low maintenance demand. However, an increasing environmental awareness, the protection of health and the shortage of fossil resources are the driving factors to further enhance the internal combustion process of two-stroke engines. The reduction of emissions and fuel consumption with a constant power level is focused on. Developments deal with the optimization of the combustion process itself or the enhancement of the exhaust gas aftertreatment. Especially in very small two-stroke engines an exhaust gas aftertreatment system is rarely applied, due to disadvantages regarding component temperatures and product costs.
Technical Paper

Experimental Investigations Regarding the Potential of an Electronic Ignition Timing Control for a Lawn Mower Engine

2016-11-08
2016-32-0083
In order to fulfill future regulations regarding emissions and CO2 reduction, the small engine market inclines to migrate from carburetor systems to cleaner, more efficient electronic ignition controls and electronic fuel injection systems. When implementing such mechatronic systems in small engine applications, one has to consider specific boundary conditions like the lack of relevant sensors, limited possibilities in terms of space and of course the necessity to keep the costs as low as possible. Especially in the non-road mobile machinery (NRMM) segment, the absence of sensors makes it difficult to apply standard electronic control systems, which are based on engine related input signals provided by sensors. One engine related signal, which is even provided by the simplest engine setup, is some form of the crankshaft speed since it is essential for the functionality of the engine.
Technical Paper

Characterization of Different Injection Technologies for High Performance Two-Stroke Engines

2016-11-08
2016-32-0001
High performance engines are used in many different powersports applications. In several of these applications 2-stroke engines play an important role. The direct injection technology is a key technology for 2-stroke engines to fulfill both the customers’ request for high power and the environmental requirements concerning emissions and efficiency. As the load spectrum differs from one application to the other, it was interesting to find out if different injection technologies can answer the needs for different applications more efficiently regarding performance but also economic targets. Therefore, the results of the BRP Rotax 600 cm3 E-TEC (direct injection system) engine are compared to the same base engine but adopted with the LPDI (low pressure direct injection) technology developed by IVT at Graz University of Technology. The systems were compared on the engine testbench over 17 rpm / load points representing different product usage profiles.
Technical Paper

Dual Fuel Compression Ignition Combustion Concept for Gasoline and Diesel

2014-04-01
2014-01-1319
Dual Fuel concepts are of interest from different perspectives: use of available fuel, independence of supplier, emission reduction and energy costs. This article presents the results of experimental work investigating the possible combination and functional effects of gasoline and diesel fuels. The test bed setup for a single cylinder research engine with a displacement of 2 liters allows gasoline to be added by external mixture formation and combustion to be started by diesel pilot injection. The goal is to reduce the engine out pollutant emissions, while keeping the efficiency at a level comparable to a modern diesel engine. The main focus is on reducing soot and nitric oxide emissions. The charge composition of gasoline is homogenous, so the combustion system can also be seen as a partial or fully homogenous combustion concept, depending on the ignition timing and the ignition delay of the diesel fuel.
Technical Paper

Investigations on Low Pressure Gasoline Direct Injection for a Standard GDI Combustion System

2010-09-28
2010-32-0094
In the course of the last few years a continuous increase of the injection pressure level of gasoline direct injection systems appeared. Today's systems use an injection pressure up to 200bar and the trend shows a further increase for the future. Although several benefits go along with the increased injection pressure, the disadvantages such as higher system costs and higher energy demand lead to the question of the lowest acceptable injection pressure level for low cost GDI combustion systems. Lowering injection pressure and costs could enable the technological upgrading from MPFI to GDI in smaller engine segments, which would lead to a reduction of CO2 emission. This publication covers the investigation of a low pressure GDI system (LPDI) with focus on small and low cost GDI engines. The influence of the injection pressure on the fuel consumption and emission behavior was investigated using a 1.4l series production engine.
X