Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Fundamental Study of Waste Heat Recovery in the High Boosted 6-cylinder Heavy Duty Diesel Engine

2015-04-14
2015-01-0326
In heavy duty diesel engines, the waste heat recovery has attracted much attention as one of the technologies to improve fuel economy further. In this study, the available energy of the waste heat from a high boosted 6-cylinder heavy duty diesel engine which is equipped with a high pressure loop EGR system (HPL-EGR system) and low pressure loop EGR system (LPL-EGR system) was evaluated based on the second law of thermodynamics. The maximum potential of the waste heat recovery for improvement in brake thermal efficiency and the effect of the Rankine combined cycle on fuel economy were estimated for each single-stage turbocharging system (single-stage system) and 2-stage turbocharging system (2-stage system).
Journal Article

BSFC Improvement by Diesel-Rankine Combined Cycle in the High EGR Rate and High Boosted Diesel Engine

2013-04-08
2013-01-1638
In heavy duty diesel engines, waste heat recovery systems are remarkable means for fuel consumption improvement. In this paper, Diesel-Rankine combined cycle which is combined diesel cycle with Rankine cycle is studied to clarify the quantitative potential of fuel consumption improvement with a high EGR rate and high boosted diesel engine. The high EGR rate and high boosted diesel engine of a single cylinder research engine was used and it reaches brake specific fuel consumption (BSFC) of 193.3 g/kWh at full load (BMEP=2.0MPa). And its exhaust temperature reaches 370 C. The exhaust gas temperature does not exceed 400 C in high boosted diesel engine even at full load operating condition because of a high excess air ratio. On the other hand, exhaust gas quantity is larger due to a high boosting.
X