Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Equivalent Consumption Minimization Strategy for a Power Split Supercharger

2019-04-02
2019-01-1207
Low voltage hybridization (<60 V) supports engine start/stop, regenerative braking, and constrained torque assist/regeneration at a low cost. This work studies the potential benefits of a novel hybrid system, called a power split supercharger (PSS). A 9 kW motor is shared between boosting the engine or providing hybrid functionalities, allowing it to couple with a small engine and still support good acceleration. However, the PSS operation is limited to only one of the parallel hybrid or boosting modes at each time instance. In this work an equivalent consumption minimization strategy (ECMS) is developed to select the PSS mode and the motor torque during hybrid mode. The PSS operation is simulated over standard EPA drive cycles with an engine mean value model that captures detailed air path and PSS dynamics.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Technical Paper

Thermodynamic and Practical Benefits of Waste Energy Recovery Using an Electric Turbo-Generator Under Different Boosting Methods

2018-04-03
2018-01-0851
This paper provides insight into the tradeoffs between exhaust energy recovery and increased pumping losses from the flow restriction of the electric turbo-generator (eTG) assessed using thermodynamic principles and with a detailed GT-Power engine model. The GT-Power engine model with a positive displacement expander model was used to predict the influence of back pressure on in-cylinder residuals and combustion. The eTG is assessed for two boosting arrangements: a conventional turbocharger (TC) and an electrically assisted variable speed (EAVS) supercharger (SC). Both a low pressure (post-turbine) and high pressure (pre-turbine) eTG are considered for the turbocharged configuration. The reduction in fuel consumption (FC) possible over various drive cycles is estimated based on the steady-state efficiency of frequently visited operating points assuming all recovered energy can be reused at an engine efficiency of 30% with 10% losses in the electrical path.
Technical Paper

Modelling and Control of Engine Torque for Short-Circuit Flow and EGR Evacuation

2017-03-28
2017-01-0606
Low-Pressure Exhaust Gas Recirculation (LP-EGR) has been shown to be an effective means of improving fuel economy and suppressing knock in downsized, boosted, spark ignition engines. LP-EGR is particularly beneficial at low-speed, high-load conditions, but can lead to combustion instability at lower loads. The transport delays inherent in LP-EGR systems slow the reduction of intake manifold EGR concentrations during tip-out events, which may lead to excessive EGR concentrations at low load. This paper explores leveraging Variable Valve Timing (VVT) as a means of improving the rate of reduction of intake manifold EGR concentration prior to tip-out. At higher boost levels, high valve overlap may result in intake manifold gas passing directly to the exhaust manifold. This short-circuiting behaviour could potentially improve EGR evacuation rates.
Technical Paper

Effects of Differential Pressure Sensor Gauge-Lines and Measurement Accuracy on Low Pressure EGR Estimation Error in SI Engines

2017-03-28
2017-01-0531
Low Pressure (LP) Exhaust Gas Recirculation (EGR) promises fuel economy benefits at high loads in turbocharged SI engines as it allows better combustion phasing and reduces the need for fuel enrichment. Precise estimation and control of in-cylinder EGR concentration is crucial to avoiding misfire. Unfortunately, EGR flow rate estimation using an orifice model based on the EGR valve ΔP measurement can be challenging given pressure pulsations, flow reversal and the inherently low pressure differentials across the EGR valve. Using a GT-Power model of a 1.6 L GDI turbocharged engine with LP-EGR, this study investigates the effects of the ΔP sensor gauge-line lengths and measurement noise on LP-EGR estimation accuracy. Gauge-lines can be necessary to protect the ΔP sensor from high exhaust temperatures, but unfortunately can produce acoustic resonance and distort the ΔP signal measured by the sensor.
Technical Paper

Comparison of High- and Low-Pressure Electric Supercharging of a HDD Engine: Steady State and Dynamic Air-Path Considerations

2016-04-05
2016-01-1035
This paper numerically investigates the performance implications of the use of an electric supercharger in a heavy-duty DD13 diesel engine. Two electric supercharger configurations are examined. The first is a high-pressure (HP) configuration where the supercharger is placed after the turbocharger compressor, while the second is a low-pressure (LP) one, where the supercharger is placed before the turbocharger compressor. At steady state, high engine speed operation, the airflows of the HP and LP implementations can vary by as much as 20%. For transient operation under the Federal Test Procedure (FTP) heavy duty diesel (HDD) engine transient drive cycle, supercharging is required only at very low engine speeds to improve airflow and torque. Under the low speed transient conditions, both the LP and HP configurations show similar increases in torque response so that there are 44 fewer engine cycles at the smoke-limit relative to the baseline turbocharged engine.
Journal Article

Ethanol Detection in Flex-Fuel Direct Injection Engines Using In-Cylinder Pressure Measurements

2009-04-20
2009-01-0657
A method for detection of ethanol content in fuel for an engine equipped with direct injection (DI) is presented. The methodology is based on in-cylinder pressure measurements during the compression stroke and exploits the different charge cooling properties of ethanol and gasoline. The concept was validated using dynamometer data of a 2.0L DI turbocharged engine with variable valve timing (VVT). An algorithm was developed to process the experimental data and generate a residue from the complex cycle-to-cycle in-cylinder pressure evolution which captures the charge cooling effect. The experimental results show that there is a monotonic correlation between the residues and the fuel ethanol percentage in the majority of the cases. However, the correlation varies for different engine operating parameters; such as, speed, load, valve timing, fuel rail pressure, intake and exhaust temperature and pressure.
X