Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Multi-Resonant Speed Piezoelectric Beam Device for Harvesting Energy from Vehicle Wheels

2020-04-14
2020-01-1236
This work analyzes a cantilevered piezoelectric beam device for harvesting energy from the simultaneous rotation and translational vibration of vehicle wheels. The device attaches to the wheel rim so that it displaces tangentially during operation. A lumped-parameter analytical model for the coupled electromechanical system is derived. The device has one natural frequency that is speed-dependent because of centripetal acceleration affecting the total stiffness of the device. Even though the device has one natural frequency, it experiences three resonances as the rotation speed varies. One resonance occurs when the rotation speed coincides with the speed-dependent natural frequency of the device. The other two resonances are associated with excitations from the vibration of the vehicle wheel. The device’s parameters are chosen so that these three resonances occur when the wheel travels near 30 mph, 55 mph, and 70 mph.
Technical Paper

Lumped Parameter Thermal Network Modeling for Online Temperature Prediction of Permanent Magnet Synchronous Motor for Different Drive Cycles in Electric Vehicle Applications

2020-04-14
2020-01-0455
Electric vehicle is increasingly becoming popular and an alternate choice in automotive industries because of its environment-friendly operation. Permanent magnet synchronous machines are widely and commonly used as traction motors since they provide higher torque and power density. High torque and power density means higher current which eventually causes higher temperature rise in the motor. Higher temperature rise directly affects the motor output. Standard tests for UDDS (Urban Dynamometer Driving Schedule) and HWEFT (Highway Fuel Economy Driving Schedule) drive cycles are used to determine performance of traction motors in terms of torque, power, efficiency and thermal health. Traction motors require high torque at low speed for starting and climbing; high power at high speed for cruising; wide speed range; a fast torque response; high efficiency over wide torque and speed ranges and high reliability.
Technical Paper

Dynamic Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need of CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of base components. Among them, a wet clutch actuator continues to play a critical role in next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few literatures to describe the effects of seals on clutch actuator dynamics.
Technical Paper

Experimental Study on the Characteristics of Short Circuits and Restrikes of Spark Channels

2020-04-14
2020-01-1123
Ignition performance is critical for the implementation of diluted combustion for spark-ignition engines. The short circuit and restrike phenomena can influence the initial ignition volume and discharge duration which are important for the stable ignition processes. In this study, the short circuits and restrikes of spark channels are studied with various flow velocities, spark plug gaps and discharge energies. The development of the spark channels is captured by using the direct imaging technique with a CMOS camera equipped with an image intensifier. A multi-coil ignition system is designed to enable flexible control of discharge energies. The results show that the spark plug gap size is a critical parameter to suppress the phenomena of short circuits and restrikes. With the enlargement of spark plug gap, the maximum and average lengths of the spark channel effectively increase.
Technical Paper

Evaluation of Low Mileage GPF Filtration and Regeneration as Influenced by Soot Morphology, Reactivity, and GPF Loading

2019-04-02
2019-01-0975
As European and Chinese tailpipe emission regulations for gasoline light-duty vehicles impose particulate number limits, automotive manufacturers have begun equipping some vehicles with a gasoline particulate filter (GPF). Increased understanding of how soot morphology, reactivity, and GPF loading affect GPF filtration and regeneration characteristics is necessary for advancing GPF performance. This study investigates the impacts of morphology, reactivity, and filter soot loading on GPF filtration and regeneration. Soot morphology and reactivity are varied through changes in fuel injection parameters, known to affect soot formation conditions. Changes in morphology and reactivity are confirmed through analysis using a transmission electron microscope (TEM) and a thermogravimetric analyzer (TGA) respectively.
Technical Paper

A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress

2019-04-02
2019-01-0946
Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combustion bomb and counterflow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC).
Technical Paper

Dual Fuel Injection (DI + PFI) for Knock and EGR Dilution Limit Extension in a Boosted SI Engine

2018-09-10
2018-01-1735
Combined direct and port fuel injection (i.e., dual injection) in spark ignition engines is of increasing interest due to the advantages for fuel flexibility and the individual merits of each system for improving engine performance and reducing engine-out emissions. Greater understanding of the impact of dual injection will enable deriving the maximum benefit from the two injection systems. This study investigates the effects of dual injection on combustion, especially knock propensity and tolerance to exhaust gas recirculation (EGR) dilution at different levels of EGR. A baseline for comparison with dual injection results was made using direct injection fueling only. A splash blended E20 fuel was used for the direct injection only tests. For the dual injection tests, gasoline, representing 80% by volume of the total fuel, was injected using the direct injector, and ethanol, representing 20% by volume of the total fuel, was injected using the port fuel injector.
Technical Paper

A Model for Crank-Angle-Resolved Engine Cylinder Pressure Estimation

2018-04-03
2018-01-1157
Real-time measurement or estimation of crank-angle-resolved engine cylinder pressure may become commonplace in the next generation of engine controllers to optimize spark, valve timing, or compression ratio. Toward the development of a real-time cylinder pressure estimator, this work presents a crank-angle-resolved engine cylinder pressure estimation model that could accept inputs such as speed, manifold pressure and throttle position, and deliver crank-angle resolved cylinder pressure in real-time, at engine speeds covering the useful operating range of most engines. The model was validated by comparing simulated cylinder pressure with thirteen sets of cylinder pressure data, from two different commercial engines from two different OEMs. Estimated pressures were compared against the actual measured pressure traces. The average relative error is about 3% while the maximum relative error is 5%. Both can be improved with further tuning.
Technical Paper

Thermodynamic and Practical Benefits of Waste Energy Recovery Using an Electric Turbo-Generator Under Different Boosting Methods

2018-04-03
2018-01-0851
This paper provides insight into the tradeoffs between exhaust energy recovery and increased pumping losses from the flow restriction of the electric turbo-generator (eTG) assessed using thermodynamic principles and with a detailed GT-Power engine model. The GT-Power engine model with a positive displacement expander model was used to predict the influence of back pressure on in-cylinder residuals and combustion. The eTG is assessed for two boosting arrangements: a conventional turbocharger (TC) and an electrically assisted variable speed (EAVS) supercharger (SC). Both a low pressure (post-turbine) and high pressure (pre-turbine) eTG are considered for the turbocharged configuration. The reduction in fuel consumption (FC) possible over various drive cycles is estimated based on the steady-state efficiency of frequently visited operating points assuming all recovered energy can be reused at an engine efficiency of 30% with 10% losses in the electrical path.
Technical Paper

High-Speed Imaging Studies of Gasoline Fuel Sprays at Fuel Injection Pressures from 300 to 1500 bar

2018-04-03
2018-01-0294
High-pressure gasoline fuel injection is a means to improve combustion efficiency and lower engine-out emissions. The objective of this study was to quantify the effects of fuel injection pressure on transient gasoline fuel spray development for a wide range of injection pressures, including over 1000 bar, using a constant volume chamber and high-speed imaging. Reference grade gasoline was injected at fuel pressures of 300, 600, 900, 1200, and 1500 bar into the chamber, which was pressurized with nitrogen at 1, 5, 10, and 20 bar at room temperature (298 K). Bulk spray imaging data were used to quantify spray tip penetration distance, rate of spray tip penetration and spray cone angle. Near-nozzle data were used to evaluate the early spray development.
Technical Paper

A Fuel Sensitive Ignition Delay Model for Direct Injection Diesel Engine Operating under EGR Diluted Conditions

2018-04-03
2018-01-0231
This empirical work investigates the impacts of thermodynamic parameters, such as pressure and temperature, and fuel properties, such as fuel Cetane number and aromatic contents on ignition delay in diesel engines. Systematic tests are conducted on a single-cylinder research engine to evaluate the ignition delay changes due to the fuel property differences at low, medium and high engine loads under different EGR dilution ratios. The test fuels offer a range of Cetane numbers from 28 to 54.2 and aromatic contents volume ratios from 19.4% to 46.6%. The experimental results of ignition delays are used to derive an ignition delay model modified from Arrhenius’ expression. Following the same format of Arrhenius’ equation, the model incorporates the pressure and temperature effects, and further includes the impacts of intake oxygen concentration, fuel Cetane number and aromatic contents volume ratio on the ignition delay.
Technical Paper

Effects of Engine Speed on Spray Behaviors of the Engine Combustion Network “Spray G” Gasoline Injector

2018-04-03
2018-01-0305
Non-reacting spray behaviors of the Engine Combustion Network “Spray G” gasoline fuel injector were investigated at flash and non-flash boiling conditions in an optically accessible single cylinder engine and a constant volume spray chamber. High-speed Mie-scattering imaging was used to determine transient liquid-phase spray penetration distances and observe general spray behaviors. The standardized “G2” and “G3” test conditions recommended by the Engine Combustion Network were matched in this work and the fuel was pure iso-octane. Results from the constant volume chamber represented the zero (stationary piston) engine speed condition and single cylinder engine speeds ranged from 300 to 2,000 RPM. As expected, the present results indicated the general spray behaviors differed significantly between the spray chamber and engine. The differences must be thoughtfully considered when applying spray chamber results to guide spray model development for engine applications.
Technical Paper

Contrary Effects of Nozzle Length on Spray Primary Breakup under Subcooled and Superheated Conditions

2018-04-03
2018-01-0302
Nozzle length has been proven influencing fuel spray characteristics, and subsequently fuel-air mixing and combustion processes. However, almost all existing related studies are conducted when fuel is subcooled, of which fuel evaporation is extremely weak, especially at the near nozzle region. In addition, injector tip can be heated to very high temperature in SIDI engines, which would trigger flash boiling fuel spray. Therefore, in this study, effect of nozzle length on spray characteristics is investigated under superheated conditions. Three single-hole injectors with different nozzle length were studied. High speed backlit imaging technique was applied to acquire magnified near nozzle spray images based on an optical accessible constant volume chamber. Fuel pressure was maintained at 15 MPa, and n-hexane was chosen as test fuel.
Technical Paper

Influence of Early and Late Fuel Injection on Air Flow Structure and Kinetic Energy in an Optical SIDI Engine

2018-04-03
2018-01-0205
The turbulent in-cylinder air flow and the unsteady high-pressure fuel injection lead to a highly transient air fuel mixing process in spark-ignition direct-injection (SIDI) engines, which is the leading cause for combustion cycle-to-cycle variation (CCV) and requires further investigation. In this study, crank-angle resolution particle image velocimetry (PIV) was employed to simultaneously measure the air flow and fuel spray structure at 1300 rpm in an optically accessible single-cylinder SIDI engine. The measurement was conducted at the center tumble plane of the four-valve pent-roof engine, bisecting the spark plug and fuel injector. 84 consecutive cycles were recorded for three engine conditions, i.e. (1) none-fueled motored condition, (2) homogeneous-charge mode with start of injection (SOI) during intake (50 crank-angle degree (CAD) after top dead center exhaust, aTDCexh), and (3) stratified-charge mode with SOI during mid compression (270 aTDCexh).
Technical Paper

Infrared Borescopic Analysis of Ignition and Combustion Variability in a Heavy-Duty Natural-Gas Engine

2018-04-03
2018-01-0632
Optical imaging diagnostics of combustion are most often performed in the visible spectral band, in part because camera technology is most mature in this region, but operating in the infrared (IR) provides a number of benefits. These benefits include access to emission lines of relevant chemical species (e.g. water, carbon dioxide, and carbon monoxide) and obviation of image intensifiers (avoiding reduced spatial resolution and increased cost). High-speed IR in-cylinder imaging and image processing were used to investigate the relationships between infrared images, quantitative image-derived metrics (e.g. location of the flame centroid), and measurements made with in-cylinder pressure transducers (e.g. coefficient of variation of mean effective pressure). A 9.7-liter, inline-six, natural-gas-fueled engine was modified to enable exhaust-gas recirculation (EGR) and provide borescopic optical access to one cylinder for two high-speed infrared cameras.
Technical Paper

Effects of Fuel Injection Events of Ethanol and Gasoline Blends on Boosted Direct-Injection Engine Performance

2017-10-08
2017-01-2238
Numerous studies have demonstrated the benefits of ethanol in increasing the thermal efficiency of gasoline-fueled spark ignition engines via the higher enthalpy of vaporization and higher knock resistance of ethanol compared with gasoline. This study expands on previous work by considering a split fuel injection strategy with a boosted direct injection spark ignition engine fueled with E0 (100% by volume reference grade gasoline; with research octane number = 91 and motor octane number = 83), E100 (100% by volume anhydrous ethanol), and various splash-blends of the two fuels. Experiments were performed using a production 3-cylinder Ford Ecoboost engine where two cylinders were de-activated to create a single-cylinder engine with a displacement of 0.33 L. The engine was operated over a range of loads with boosted intake manifold absolute pressure (MAP) from 1 bar to 1.5 bar.
Technical Paper

An Indirect Tire Health Monitoring System Using On-board Motion Sensors

2017-03-28
2017-01-1626
This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
Journal Article

Investigation of SCR Catalysts for Marine Diesel Applications

2017-03-28
2017-01-0947
Evolving marine diesel emission regulations drive significant reductions of nitrogen oxide (NOx) emissions. There is, therefore, considerable interest to develop and validate Selective Catalytic Reduction (SCR) converters for marine diesel NOx emission control. Substrates in marine applications need to be robust to survive the high sulfur content of marine fuels and must offer cost and pressure drop benefits. In principle, extruded honeycomb substrates of higher cell density offer benefits on system volume and provide increased catalyst area (in direct trade-off with increased pressure drop). However higher cell densities may become more easily plugged by deposition of soot and/or sulfate particulates, on the inlet face of the monolithic converter, as well as on the channel walls and catalyst coating, eventually leading to unacceptable flow restriction or suppression of catalytic function.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Characteristic Time Analysis of SI Knock with Retarded Combustion Phasing in Boosted Engines

2017-03-28
2017-01-0667
This study investigates the use of a characteristic reaction time as a possible method to speed up automotive knock calculations. In an earlier study of HCCI combustion it was found that for ignition at TDC, the ignition delay time at TDC conditions was required to be approximately 10 crank angle degrees (CAD), regardless of engine speed. In this study the analysis has been applied to knock in SI engines over a wide range of engine operating conditions including boosted operation and retarded combustion phasing, typical of high load operation of turbocharged engines. Representative pressure curves were used as input to a detailed kinetics calculation for a gasoline surrogate fuel mechanism with 312 species. The same detailed mechanism was used to compile a data set with traditional constant volume ignition delays evaluated at the peak pressure conditions in the end gas assuming adiabatic compression.
X