Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Estimating How Long In-Vehicle Tasks Take: Static Data for Distraction and Ease-of-Use Evaluations

2024-04-09
2024-01-2505
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?”
Technical Paper

Study of Dimethyl Ether Fuel Spray Characteristics and Injection Profile

2024-04-09
2024-01-2702
The majority of transportation systems have continued to be powered by the internal combustion engine and fossil fuels. Heavy-duty applications especially are reliant on diesel engines for their high brake efficiency, power density, and robustness. Although engineering developments have advanced engines towards significantly fewer emissions and higher efficiency, the use of fossil-derived diesel as fuel sets a fundamental threshold in the achievable total net carbon reduction. Dimethyl ether can be produced from various renewable feedstocks and has a high chemical reactivity making it suitable for heavy-duty applications, namely compression ignition direct injection engines. Literature shows the successful use of DME fuels in diesel engines without significant hardware modifications.
Technical Paper

Investigation of Fuel Injection Pressure Impact on Dimethyl Ether Combustion

2023-10-31
2023-01-1644
Compression ignition engines used in heavy-duty applications are typically powered by diesel fuel. The high energy density and feedstock abundance provide a continuing source for the immense energy demand. However, the heavy-duty transportation sector is challenged with lowering greenhouse gas and combustion by-product emissions, including carbon dioxide, nitrogen oxides, and particulate matter. The continuing development of engine management and combustion strategies has proven the ability to meet current regulations, particularly with higher fuel injection pressure. Nonetheless, a transition from diesel to a renewable alternative fuel source will play a significant role in reducing greenhouse gases while maintaining the convenience and energy density inherent in liquid fuels. Dimethyl ether is a versatile fuel that possesses combustion properties suitable for compression ignition engines and physical properties helpful for clean combustion.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
Research Report

Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights

2022-07-28
EPR2022016
Facial recognition software (FRS) is a form of biometric security that detects a face, analyzes it, converts it to data, and then matches it with images in a database. This technology is currently being used in vehicles for safety and convenience features, such as detecting driver fatigue, ensuring ride share drivers are wearing a face covering, or unlocking the vehicle. Public transportation hubs can also use FRS to identify missing persons, intercept domestic terrorism, deter theft, and achieve other security initiatives. However, biometric data is sensitive and there are numerous remaining questions about how to implement and regulate FRS in a way that maximizes its safety and security potential while simultaneously ensuring individual’s right to privacy, data security, and technology-based equality.
Research Report

Automated Vehicles: A Human/Machine Co-learning Perspective

2022-04-27
EPR2022009
Automated vehicles (AVs)—and the automated driving systems (ADSs) that enable them—are increasing in prevalence but remain far from ubiquitous. Progress has occurred in spurts, followed by lulls, while the motor transportation system learns to design, deploy, and regulate AVs. Automated Vehicles: A Human/Machine Co-learning Experience focuses on how engineers, regulators, and road users are all learning about a technology that has the potential to transform society. Those engaged in the design of ADSs and AVs may find it useful to consider that the spurts and lulls and stakeholder tussles are a normal part of technology transformations; however, this report will provide suggestions for effective stakeholder engagement. Click here to access the full SAE EDGETM Research Report portfolio.
Journal Article

Estimating the Workload of Driving Using Video Clips as Anchors

2022-03-29
2022-01-0805
As new technology is added to vehicles and traffic congestion increases, there is a concern that drivers will be overloaded. As a result, there has been considerable interest in measuring driver workload. This can be achieved using many methods, with subjective assessments such as the NASA Task Loading Index (TLX) being most popular. Unfortunately, the TLX is unanchored, so there is no way to compare TLX values between studies, thus limiting the value of those evaluations. In response, a method was created to anchor overall workload ratings. To develop this method, 24 subjects rated the workload of clips of forward scenes collected while driving on rural, urban, and limited-access roads in relation to 2 looped anchor clips. Those clips corresponded to Level of Service (LOS) A and E (light and heavy traffic) and were assigned values of 2 and 6 respectively.
Technical Paper

Combustion Characterization of DME-Fueled Dual Fuel Combustion with Premixed Ethanol

2022-03-29
2022-01-0461
The heterogeneous nature of direct injection (DI) combustion yields high combustion efficiencies but harmful emissions through the formation of high nitrogen oxide (NOx) and smoke emissions. In response, extensive empirical and computational research has focused on balancing the NOx-smoke trade-off to limit diesel DI combustion emissions. Dimethyl ether (DME) fuel is applicable in DI compression ignition engines and its high fuel oxygen produces near-smoke-free emissions. Moreover, the addition of a premixed fuel can improve mixture homogeneity and minimize the DI fuel energy demands lessening injection durations. For this technique, a low reactivity fuel such as ethanol is essential to avoid early autoignition in high compression ratio engines. In this work, empirical experiments of dual fuel operation have been conducted using premixed ethanol with high-pressure direct injection DME.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

The Study of the Effective Contact Area of Suction Cup

2021-04-06
2021-01-0298
As the industry moves further into the automotive age, the failure of the cup during the transportation of the parts during the assembly process is costly. Among them, the effective contact area of the suction cup could influence the significant availability of the pressure, which is necessary to investigate the truth. The essential objective for this research is trying to improve the effectiveness of the suction cups during gripers work in company’s industry. In this research, the real work condition is simulated by the experimental setup to find the influence of the effective contact area. In this paper, the proper methodology to measure the effective area by testing different size cups under different conditions is described. The results are verified by the digital image correlation (DIC) technique.
Technical Paper

Numerical Investigation on NO to NO2 Conversion in a Low-Temperature Combustion CI Engine

2021-04-06
2021-01-0506
Low temperature combustion (LTC) has been proved to overcome the trade-off between NOx and soot emissions in direct injection compression ignition engines. However, the lowered NOx emissions are accompanied by high hydrocarbon and CO emissions. Moreover, the NOx emissions under LTC has much higher NO2 concentrations compared with traditional high temperature combustion conditions. Experimental investigations have been carried out to show the hydrocarbon impact on NOx emissions and NO-NO2 conversion under various engine operation conditions, but the mechanism is less understood. The article includes numerical studies of the impact of hydrocarbons in the in-cylinder conversion of NO to NO2 during low temperature conditions in a compression ignition engine. In the present work, a stochastic reactor model with detailed chemical kinetics is utilized to investigate the reaction pathways during the NOx reduction and NO2 conversion processes.
Technical Paper

Accelerometer-Based Estimation of Combustion Features for Engine Feedback Control of Compression-Ignition Direct-Injection Engines

2020-04-14
2020-01-1147
An experimental investigation of non-intrusive combustion sensing was performed using a tri-axial accelerometer mounted to the engine block of a small-bore high-speed 4-cylinder compression-ignition direct-injection (CIDI) engine. This study investigates potential techniques to extract combustion features from accelerometer signals to be used for cycle-to-cycle engine control. Selection of accelerometer location and vibration axis were performed by analyzing vibration signals for three different locations along the block for all three of the accelerometer axes. A magnitude squared coherence (MSC) statistical analysis was used to select the best location and axis. Based on previous work from the literature, the vibration signal filtering was optimized, and the filtered vibration signals were analyzed. It was found that the vibration signals correlate well with the second derivative of pressure during the initial stages of combustion.
Technical Paper

Variability in Driving Conditions and its Impact on Energy Consumption of Urban Battery Electric and Hybrid Buses

2020-04-14
2020-01-0598
Growing environmental concerns and stringent vehicle emissions regulations has created an urge in the automotive industry to move towards electrified propulsion systems. Reducing and eliminating the emission from public transportation vehicles plays a major role in contributing towards lowering the emission level. Battery electric buses are regarded as a type of promising green mass transportation as they provide the advantage of less greenhouse gas emissions per passenger. However, the electric bus faces a problem of limited range and is not able to drive throughout the day without being recharged. This research studies a public bus transit system example which servicing the city of Ann Arbor in Michigan and investigates the impact of different electrification levels on the final CO2 reduction. Utilizing models of a conventional diesel, hybrid electric, and battery electric bus, the CO2 emission for each type of transportation bus is estimated.
Technical Paper

Minimization of Electric Heating of the Traction Induction Machine Rotor

2020-04-14
2020-01-0562
The article solves the problem of reducing electric power losses of the traction induction machine rotor to prevent its overheating in nominal and high-load modes. Electric losses of the rotor power are optimized by the stabilization of the main magnetic flow of the electric machine at a nominal level with the amplitude-frequency control in a wide range of speeds and increased loads. The quasi-independent excitation of the induction machine allows us to increase the rigidity of mechanical characteristics, decrease the rotor slip at nominal loads and overloads and significantly decrease electrical losses in the rotor as compared to other control methods. The article considers the technology of converting the power of individual phases into a single energy flow using a three-phase electric machine equivalent circuit and obtaining an energy model in the form of equations of instantaneous active and reactive power balance.
Journal Article

The Effect of EGR Dilution on the Heat Release Rates in Boosted Spark-Assisted Compression Ignition (SACI) Engines

2020-04-14
2020-01-1134
This paper presents an experimental investigation of the impact of EGR dilution on the tradeoff between flame and end-gas autoignition heat release in a Spark-Assisted Compression Ignition (SACI) combustion engine. The mixture was maintained stoichiometric and fuel-to-charge equivalence ratio (ϕ′) was controlled by varying the EGR dilution level at constant engine speed. Under all conditions investigated, end-gas autoignition timing was maintained constant by modulating the mixture temperature and spark timing. Experiments at constant intake pressure and constant spark timing showed that as ϕ′ is increased, lower mixture temperatures are required to match end-gas autoignition timing. Higher ϕ′ mixtures exhibited faster initial flame burn rates, which were attributed to the higher laminar flame speeds immediately after spark timing and their effect on the overall turbulent burning velocity.
Journal Article

A Multi-Resonant Speed Piezoelectric Beam Device for Harvesting Energy from Vehicle Wheels

2020-04-14
2020-01-1236
This work analyzes a cantilevered piezoelectric beam device for harvesting energy from the simultaneous rotation and translational vibration of vehicle wheels. The device attaches to the wheel rim so that it displaces tangentially during operation. A lumped-parameter analytical model for the coupled electromechanical system is derived. The device has one natural frequency that is speed-dependent because of centripetal acceleration affecting the total stiffness of the device. Even though the device has one natural frequency, it experiences three resonances as the rotation speed varies. One resonance occurs when the rotation speed coincides with the speed-dependent natural frequency of the device. The other two resonances are associated with excitations from the vibration of the vehicle wheel. The device’s parameters are chosen so that these three resonances occur when the wheel travels near 30 mph, 55 mph, and 70 mph.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Technical Paper

Real Time 2D Pose Estimation for Pedestrian Path Estimation Using GPU Computing

2019-04-02
2019-01-0887
Future fully autonomous and partially autonomous cars equipped with Advanced Driver Assistant Systems (ADAS) should assure safety for the pedestrian. One of the critical tasks is to determine if the pedestrian is crossing the road in the path of the ego-vehicle, in order to issue the required alerts for the driver or even safety breaking action. In this paper, we investigate the use of 2D pose estimators to determine the direction and speed of the pedestrian crossing the road in front of a vehicle. Pose estimation of body parts, such as right eye, left knee, right foot, etc… is used for determining the pedestrian orientation while tracking these key points between frames is used to determine the pedestrian speed. The pedestrian orientation and speed are the two required elements for the basic path estimation.
Technical Paper

A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress

2019-04-02
2019-01-0946
Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combustion bomb and counterflow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC).
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
X