Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of Intercooler Hose for Future Engine

2020-04-14
2020-01-0236
Current intercooler hoses, which are made from fluorocarbon rubber (FKM) and silicone rubber (VMQ) exhibit high heat resistance and durability. However, they will be used in more severe use environments, and there is a risk of problems arising with their current material composition. This investigation into issues concerning intercooler hoses in future engines found that FKM mechanical properties were insufficient under high temperature environments. In this research, efforts to improve the mechanical properties of FKM focused on the low durability of the internal FKM crosslinking points as the cause of this insufficiency. The current crosslinking method has excellent acid resistance and cannot be modified. An effective improvement the properties was therefore sought by adding a new distinct crosslinking network while preserving the current level of acid resistance of the existing network. Carbon black gel was used as a reinforcing agent to form the new network.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Research on a DPF Regeneration Burner System for Use when Engine is not in Operation

2019-12-19
2019-01-2237
An on board burner that enables DPF regeneration even when an engine is at standstill has been researched. By employing pre evaporative combustion with a wick burner, miniaturization of the burner system was successfully accomplished as well as stable ignition and combustion. Total heat necessary for DPF regeneration was reduced in comparison to the active DPF regeneration by means of engine control and an oxidation catalyst. Uneven temperature distribution in DPF and excessive temperature rise, which had been recognized as issues in the regeneration of a DPF while engine is at standstill, were solved by increase of combustion air amount and multi-step control of regeneration temperature and reliable regeneration was accomplished.
Technical Paper

Characteristics of Diesel Engine Oil for Heavy Duty Commercial Vehicles Achieving for both Fuel Economy and Reliability

2019-12-19
2019-01-2243
When the engine oil evaporates in the crankcase, it is necessary to discharge to the outside of the engine or returns to the intake air as part of blow-by gas. The amount of oil content in the blow-by gas is preferable to be as small as possible. This paper researched the evaporation characteristics of diesel engine oil for heavy duty into blow-by gas using 5W-30 and 10W-30 engine oils with the equivalent to Noack. As a result, it is found that evaporate phenomenon cannot be explained well enough by just Noack and clarified of the oil evaporation mechanism in blow-by gas.
Journal Article

Influence of Combustion Chamber Shape and In-Cylinder Density on Soot Formation in Diesel Combustion

2019-12-19
2019-01-2271
The change in the smoke emissions from a diesel engine with the shapes of the combustion chamber and the in-cylinder density was investigated with focuses on the mixing and the soot formation in a spray flame. First, the mixing of the fuel and air between the nozzle exit and the set-off length was used as an indicator for the formation of soot. Although this indicator can explain the influence of the density, it cannot explain the changes in the smoke emissions with a change in the shape of the combustion chamber. Next, by focusing on the soot distribution in a quasi-steady-state spray flame, the soot formed in the high-density condition of an optically accessible engine was investigated by applying two-color method. These results showed that the positional relationship between the maximum soot amount position and the flame impinging position can be a major influence on the smoke emissions.
Technical Paper

Effect of Diamond-Like Carbon Coating on Anti-Scuffing Characteristics of Piston Pins

2019-04-02
2019-01-0184
It has been proposed that downspeeding combined with high boost levels would effectively reduce fuel consumption in heavy-duty diesel engines. Under low-speed and high-boost operating conditions, however, the in-cylinder gas pressure, which acts on the piston crown, is greater than the piston inertia force (such that there is no force reversal), over the entire range of crank angles. Therefore, the piston pin never lifts away from the main loading area (the bottom) of the connecting rod small-end bushing where the contact pressure against the piston pin is highest. In such operating conditions, lubricant starvation is easily induced at the interface between the piston pin and small-end bushing. Through carefully devised engine tests, the authors confirmed that the piston pin scuffing phenomenon arises when the boost pressure exceeds a critical value at which the no-force reversal condition appears.
Technical Paper

A Study on Reducing Cooling loss in a Partially Insulated Piston for Diesel Engine

2018-04-03
2018-01-1276
To improve the thermal efficiency of an engine, it is particularly important to reduce the cooling loss from the combustion gas to the combustion chamber wall, which constitutes a major proportion of the total loss [1]. Previous studies addressing cooling loss reduction attempted to use ceramic in place of the conventional aluminum or iron alloys, but this led to a reduction in the volumetric efficiency and increased smoke emissions. This was caused by the ceramics having both a low thermal conductivity and high heat capacity, relative to aluminum and iron. These characteristics cause the piston wall temperature, which rises during combustion, to remain high during the intake stroke, thus increasing the intake temperature and reducing the volumetric efficiency. This increases the smoke emissions [2].
Technical Paper

Development of CNG/Diesel Dual-Compatible Engine Oil for Heavy-Duty Trucks in Thailand

2017-10-08
2017-01-2350
In Thailand, most heavy-duty trucks were equipped with diesel engine, while a small portion was equipped with compressed natural gas (CNG) engine. However, in the past few years the number of CNG fuel trucks in Thailand has increased significantly due to the cheaper cost of CNG. In general, the emphasis of heavy-duty diesel engine oil performance is on piston cleanliness and soot handling properties, while thermal and anti-oxidation properties are most critical for CNG engine oil performance. For truck fleet owners who operate both types of trucks, using the inappropriate oil that is not fit-for-purpose can adversely affect engine performance and reduce engine service lifespan under prolonged usage. A novel CNG/diesel engine oil was developed to meet both JASO DH-2 heavy-duty diesel engine oil performance and CNG engine oil performance. The candidate formulation was proved adequately fit for practical use regarding to thermal and anti-oxidation properties.
Technical Paper

A Study of Thermoacoustic Refrigerator

2017-03-28
2017-01-0158
A diesel engine is advantageous in its high thermal efficiency, however it still wastes about 50% of total input energy to exhaust and cooling losses. A feasibility study of thermoacoustic refrigerator was carried out as one of the means to recuperate waste heat. The thermoacoustic refrigerator prototyped for this study showed a capability to achieve cooling temperature lower than -20 degree C, which indicated that the system has a potential to be used in refrigerator trucks not only for cargo compartment cooling but also for cabin cooling.
Technical Paper

Development of Next Generation Gear Oil for Heavy Duty Vehicles

2017-03-28
2017-01-0890
Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
Journal Article

A Study of Reliability Evaluation of Main Bearings for Multicylinder Diesel Engines

2016-04-05
2016-01-0494
In recent years, although experiment technologies on real engines and simulation technologies has been improved rapidly, the tribology contributing factors have not been quantitatively well evaluated to reveal critical lubrication failure mechanisms. In this study the oil film thickness of the main bearings in multicylinder diesel engines was measured, and the data was analyzed using response surface methodology, which is a statistical analysis methods used to quantitatively derive the factors affecting oil film thickness and the extent of their contribution. We found that the factor with the strongest effect on minimum oil film thickness is oil pressure. Lastly, as a verification test, bearing wear on the main bearings was compared under various oil pressure conditions. Clear differences in bearing wear were identified.
Technical Paper

A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance

2016-04-05
2016-01-0722
In order to improve the brake thermal efficiency of the engine, such as cooling and friction losses from the theoretical thermal efficiency, it is necessary to minimize various losses. However, it is also essential to consider improvements in theoretical thermal efficiency along with the reduction of the various losses. In an effort to improve the brake thermal efficiency of heavy-duty diesel engines used in commercial vehicles, this research focused on two important factors leading to the engine's theoretical thermal efficiency: the compression ratio and the specific heat ratio. Based on the results of theoretical thermodynamic cycle analyses for the effects of the above two factors, it was predicted that raising the compression ratio from a base engine specification of 17 to 26, and increasing the specific heat ratio would lead to a significant increase in theoretical thermal efficiency.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Technical Paper

Emission Characteristics from After-Treatment System of Medium and Light Duty Engines

2014-04-01
2014-01-1501
1 To meet the Japan Post New-Long-Term (Japan 2009) emissions regulation introduced in 2009, The Hydrocarbon Selective Catalytic Reduction (HC-SCR) system for the NOx emission with a diesel fuel was chosen among various deNOx after-treatment systems (the Urea-SCR, the NOx storage-Reduction Catalyst and so on). The HC-SCR was adopted, in addition to combustion modification of diesel engine (mainly cooled EGR) as the New DPR system. The New DPR system for medium and light duty vehicles was developed as a world's first technology by Hino Motors. Advantages of the New DPR are compact to easy-to-install catalyst converter and no urea solution (DEF) injection (regardless urea infrastructure) as compared the Urea-SCR system.
Technical Paper

A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks

2014-04-01
2014-01-0678
In heavy duty (HD) trucks cruising on expressway, about 60% of input fuel energy is wasted as losses. So it is important to recover them to improve fuel economy of them. As a waste heat recovery system, a Rankine cycle generating system was selected. And this paper mainly reports it. In this study, engine coolant was determined as main heat source, which collected energies of an engine cooling, an EGR gas and an exhaust gas, for collecting stable energy as much as possible. And the exergy of heat source was raised by increase coolant temperature to 105 deg C. As for improving the system efficiency, saturation temperature difference was expanded by improving performance of heat exchanger and by using high pressure turbine. And a recuperator which exchanges heat in working fluid between expander outlet and evaporator inlet was installed to recover the heat of working fluid at turbine generator. Then a working fluid pump was improved to reduce power consumption of the system.
Technical Paper

Effects of Alloying Elements on Wear Resistance of Automobile Cast Iron Materials

2014-04-01
2014-01-1011
Wear resistance is the important characteristics of cast iron materials for automobile components. Because the phenomenon of wear is a highly complicated mechanism involving many factors such as surface conditions, chemical reactions with lubricants, metals, and physics, it has not been fully explained. Therefore, it will be necessary to confirm and explain the wear mechanism to develop effective improvements. The purpose of this study was to investigate the structural change behavior and effects of alloying elements when the material top surface becomes worn, in order to improve the wear resistance of cylinder liners and other cast iron materials. For this purpose, several types of prototype materials were produced, and the relationship between components and wear resistance was investigated by using a laser microscope for quantitative observation of the degree of pearlite microstructure fineness.
Technical Paper

Mechanism of and Fuel Efficiency Improvement by Dimple Texturing on Liner Surface for Reduction of Friction between Piston Rings and Cylinder Bore

2014-04-01
2014-01-1661
Reducing friction between the piston ring and cylinder is an effective way of meeting the demand for lower fuel consumption in vehicle engines. To that effect, the authors have proposed a new and efficient friction reduction treatment for the cylinder. At first glance, this treatment seems similar to typical microtexture treatments, but it is built on a different approach. Through a rig tester, it was confirmed that optimizing the shape of the dimples and the treatment area for the cylinder improves FMEP between the piston ring and the cylinder liner by 17%. This report presents an analysis of the test results to explain the mechanism by which this effect is achieved. Fuel consumption was measured in an actual engine, and a maximum fuel consumption improvement of 3.2% was confirmed after conversion to the Japanese heavy duty vehicle fuel economy standards (Category T2). Lubricating oil consumption, blow-by and durability were also examined.
Technical Paper

Investigation of Thermal Fatigue Evaluation Method for Cast Iron

2013-04-08
2013-01-0393
We have developed a new test method in which temperature of cavity lip of a piston alone during engine rotation is reproduced, cavity lip strain is measured. As the results of strain measurement using the test method in a condition that simulates of conventional engines, a strain behavior was out-of-phase. And in a condition that simulates of high-load engines in future, strain behavior was clockwise-diamond cycle. It was found from the result of the test method developed that strain increased on the cavity lip. The fatigue life of the cavity lip was evaluated using the strain measured and isothermal fatigue curves which obtained by the strain controlled isothermal fatigue test. The result of engine durability test has revealed that the developed method was valid for thermal fatigue evaluation of the cavity lip.
Technical Paper

Improvement of Low-Temperature Performance of The NOx Reduction Efficiency on the Urea-SCR Catalysts

2013-04-08
2013-01-1076
Diesel engine has a good fuel economy and high durability and used widely for power source such as heavy duty in the world. On the other hand, it is required to reduce NOx (Nitrogen Oxides) and PM (Particulate Matter) emissions further from diesel exhaust gases to preserve atmosphere. The urea-SCR (Selective Catalytic Reduction) system is the most promising measures to reduce NOx emissions. DPF (Diesel Particulate Filter) system is commercialized for PM reduction. However, in case that a vehicle has a slow speed as an urban area driving, a diesel exhaust temperature is too low to activate SCR catalyst for NOx reduction in diesel emissions. Moreover, the diesel exhaust temperature becomes lower as a future engine has less fuel consumption. The purpose of this study is reduction of NOx emission from a heavy-duty diesel engine using the Urea SCR system at the low temperature.
X