Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study on Reducing Cooling loss in a Partially Insulated Piston for Diesel Engine

2018-04-03
2018-01-1276
To improve the thermal efficiency of an engine, it is particularly important to reduce the cooling loss from the combustion gas to the combustion chamber wall, which constitutes a major proportion of the total loss [1]. Previous studies addressing cooling loss reduction attempted to use ceramic in place of the conventional aluminum or iron alloys, but this led to a reduction in the volumetric efficiency and increased smoke emissions. This was caused by the ceramics having both a low thermal conductivity and high heat capacity, relative to aluminum and iron. These characteristics cause the piston wall temperature, which rises during combustion, to remain high during the intake stroke, thus increasing the intake temperature and reducing the volumetric efficiency. This increases the smoke emissions [2].
Technical Paper

A Study of Thermoacoustic Refrigerator

2017-03-28
2017-01-0158
A diesel engine is advantageous in its high thermal efficiency, however it still wastes about 50% of total input energy to exhaust and cooling losses. A feasibility study of thermoacoustic refrigerator was carried out as one of the means to recuperate waste heat. The thermoacoustic refrigerator prototyped for this study showed a capability to achieve cooling temperature lower than -20 degree C, which indicated that the system has a potential to be used in refrigerator trucks not only for cargo compartment cooling but also for cabin cooling.
Technical Paper

A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance

2016-04-05
2016-01-0722
In order to improve the brake thermal efficiency of the engine, such as cooling and friction losses from the theoretical thermal efficiency, it is necessary to minimize various losses. However, it is also essential to consider improvements in theoretical thermal efficiency along with the reduction of the various losses. In an effort to improve the brake thermal efficiency of heavy-duty diesel engines used in commercial vehicles, this research focused on two important factors leading to the engine's theoretical thermal efficiency: the compression ratio and the specific heat ratio. Based on the results of theoretical thermodynamic cycle analyses for the effects of the above two factors, it was predicted that raising the compression ratio from a base engine specification of 17 to 26, and increasing the specific heat ratio would lead to a significant increase in theoretical thermal efficiency.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Technical Paper

Development of Energy Management for Small Electric Buses

2015-04-14
2015-01-0246
An energy management method and model for small electric buses was studied. The model consists of a drive motor & inverter, a lithium ion battery, electric auxiliary devices and a mechanical powertrain. A small electric bus was developed based on the short travel distance, high charging frequency concept. Since 2012, two buses have operated as community buses in two different regions, and another bus started operations in a third region in 2013. The development of an energy management model accounting for operating conditions made it possible to keep the lithium ion battery capacity to a minimum. This paper describes energy management for this small electric bus, the design of the vehicle and the results of evaluating actual operation.
Technical Paper

Development of Road's Gradient Anticipatory Algorithm for Hybrid Heavy Duty Truck

2014-09-30
2014-01-2377
For the purpose of reducing fuel consumption, a hybrid heavy duty truck was considered. Generally, HV (Hybrid Vehicle)'s energy is regenerated from deceleration energy in urban area. Hybrid heavy duty truck's energy is regenerated from potential energy on highway. Under this circumstance, some portion of energy may not be accumulated, because capacity of HV battery is limited. In order to maximize accumulating energy in the next descent, HV battery's energy shall be adequately reduced beforehand. This can be achieved by optimizing motor assist torque considering road's altitude and gradient. In this paper, performance of the algorithm is discussed.
Technical Paper

Effects of Alloying Elements on Wear Resistance of Automobile Cast Iron Materials

2014-04-01
2014-01-1011
Wear resistance is the important characteristics of cast iron materials for automobile components. Because the phenomenon of wear is a highly complicated mechanism involving many factors such as surface conditions, chemical reactions with lubricants, metals, and physics, it has not been fully explained. Therefore, it will be necessary to confirm and explain the wear mechanism to develop effective improvements. The purpose of this study was to investigate the structural change behavior and effects of alloying elements when the material top surface becomes worn, in order to improve the wear resistance of cylinder liners and other cast iron materials. For this purpose, several types of prototype materials were produced, and the relationship between components and wear resistance was investigated by using a laser microscope for quantitative observation of the degree of pearlite microstructure fineness.
Technical Paper

Application of Set-Based Design Method to Ride Comfort Design with a Large Number of Design Parameters

2014-04-01
2014-01-0881
Design work for truck suspension systems requires multi-objective optimization using a large number of parameters that cannot be solved in a simple way. This paper proposes a process-based systematization concept for ride comfort design using a set-based design method. A truck was modeled with a minimum of 13 degrees of freedom, and suspension performance under various vehicle speeds, road surface conditions, and load amounts was calculated. The range of design parameters for the suspension, the range of performance requirements, and the optimal values within these ranges were defined based on the knowledge and know-how of experienced design engineers. The final design of the suspension was installed in a prototype truck and evaluated. The performance of the truck satisfied all the objectives and the effectiveness of the set-based design approach was confirmed.
Technical Paper

Development of New Light Duty Hybrid Truck

2012-09-24
2012-01-1985
Hino Motors, Ltd. (Hino) launched the world's first hybrid city bus in 1991. Since then, the same hybrid technology has been refined and applied to a range of commercial vehicles, from city and tour buses to light and medium duty trucks, expanding the commercial hybrid vehicle line up. After 20 years of refining this technology, in 2011 Hino launched an all new light duty hybrid truck in Japan. An alternate version of the truck was developed to meet the particular needs of the North American market, differing from the Japanese model in several important features. The Japanese model's automated manual transmission was replaced with a fully automatic transmission, and the motor and inverter specifications were altered. This paper outlines the development process and introduces various characteristics of the technologies employed in the North American hybrid model.
Technical Paper

Impacts on Engine Oil Performance by the Use of Waste Cooking Oil as Diesel Fuel

2011-08-30
2011-01-2115
Technical impacts on engine oil performance by the use of waste cooking oil as bio-diesel fuel (BDF) are not well understood while the industry has made significant progress in studies on quality specifications and infrastructure. The authors, who consist of a consortium organized by Japan Lubricating Oil Society (JALOS), examined technical effects of waste cooking oil as BDF on engine oil performance such as wear and high temperature corrosion using vehicle fleets and bench tests to identify technical issues of engine oil meeting the use of BDF. The study brings fundamental information about technical impacts of BDF on engine oils.
Journal Article

Effect of Fischer-Tropsch Diesel on Fuel Supply System

2011-08-30
2011-01-1950
This paper investigates the effects of Fischer-Tropsch Diesel (FTD) (a completely a paraffinic fuel) on the fuel supply system in automotive applications. In particular, the effects of Gas to Liquid (GTL) (an FTD synthesized from natural gas) on the elastomer components has been investigated by laboratory scale tests and field trials. In the field trials, GTL was supplied to a commercial vehicle operator and the effect of real running conditions was observed. Also, the laboratory scale testing to simulate the actual condition of usage of a commercial vehicle was conducted under stringent conditions, and a correlation with the field trials was investigated. As a result, no negative effects related to GTL were found.
Technical Paper

Development of Efficient Urea-SCR Systems for EPA 2010-Compliant Medium Duty Diesel Vehicles

2011-04-12
2011-01-1309
The U.S. Environmental Protection Agency (EPA) issued new emissions regulations, which came into effect in January, 2010. These EPA 2010 regulations are the most stringent emissions standards in the world, reducing both particulate matter (PM) and nitrogen oxides (NOx) to nearly zero levels. Hino Motors improved upon its previous EPA 2007-compliant engine, developing a new exhaust after-treatment system in which a Diesel Particulate active Reduction System (DPR), a Urea-Selective Catalytic Reduction (SCR) System and a Burner System are employed to meet EPA 2010 emissions regulations for medium duty commercial vehicles. DPR was already developed and utilized to reduce PM to meet EPA 2007 standards, but the Urea-SCR System is newly developed technology used to reduce NOx emissions to comply with EPA2010 emissions regulations. In addition, a Burner System is used to elevate exhaust gas temperatures in order to improve both SCR performance and DPR active Regeneration.
Technical Paper

Development of New Diesel Particulate Active Reduction System for both NOx and PM Reduction

2011-04-12
2011-01-1277
The new Diesel Particulate active Reduction (DPR) system was developed for a medium-duty commercial vehicle as a deNOx catalyst combined with the conventional DPR system to achieve the Japan Post New-Long-Term (JPNLT) emissions regulations. It consists of a catalyst converter named as the new DPR cleaner, a fuel dosing injector, NOx sensors, temperatures and pressure sensors. The new DPR cleaner was constructed from a Front Diesel Oxidation Catalyst (F-DOC), a catalyzed particulate Filter (Filter), and a Rear Diesel Oxidation Catalyst (R-DOC). A newly developed Hydrocarbon Selective Catalyst Reduction (HC-SCR) catalyst was employed for each catalyst aiming to reduce NOx emissions with diesel fuel supplied from the fuel dosing injector. While the total volume of the catalyst was increased, the compact and easy-to-install catalyst converter was realized through the optimization of the flow vector and flow distribution in it by means of Computational Fluid Dynamics (CFD) analysis.
Technical Paper

Advanced Safety Technologies for Large Trucks

2007-08-05
2007-01-3589
Large truck accidents sometimes result in severe damages or give large disturbance of traffic and there are demands of improving vehicle safety characteristics. Main types of traffic accidents concerned are rear-end collision and single accident. As countermeasures for rear-end collisions, world-first collision mitigation brake for commercial vehicles; Pre-crash Safety System, was developed. If there is possibility of collision, warning to driver and brake control intervention is carried out in stepwise fashion and collision speed is decreased. To achieve higher effect in collision mitigation, it is necessary to activate warning or brake-force in earlier timing. Inter-vehicle or infrastructure-vehicle communication offer promising prospect. Tractor-trailer combinations show some instable behaviors. “Roll Stability Assist” and “Vehicle Stability Control” were developed to assist drivers to avoid the occurrence of these instable behaviors.
Technical Paper

R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs

2005-10-24
2005-01-3828
Ultra-low energy consumption and ultra-low emission vehicle technologies have been developed by combining petroleum-alternative clean energy with a hybrid electric vehicle (HEV) system. Their component technologies cover a wide range of vehicle types, such as passenger cars, delivery trucks, and city buses, adsorbed natural gas (ANG), compressed natural gas (CNG), and dimethyl ether (DME) as fuels, series (S-HEV) and series/parallel (SP-HEV) for hybrid types, and as energy storage systems (ESSs), flywheel batteries (FWBs), capacitors, and lithium-ion (Li-ion) batteries. Evaluation tests confirmed that the energy consumption of the developed vehicles is 1/2 of that of conventional diesel vehicles, and the exhaust emission levels are comparable to Japan's ultra-low emission vehicle (J-ULEV) level.
Technical Paper

DPR Developed for Extremely Low PM Emissions in Production Commercial Vehicles

2004-03-08
2004-01-0824
DPR is a particulate-emissions reduction system that has been developed to reduce particulate emissions in production commercial vehicles and consists of a multiple fuel-injection system, an engine electronic control unit, and a DPR-Cleaner which includes an oxidation catalyst, a catalyzed particulate filter, and silencers. DPR performs active regeneration to accelerate the regeneration of the filter under engine operating conditions where regeneration by passive regeneration alone is not sufficient. Thus, DPR makes it possible to regenerate the filter regardless of the exhaust gas temperature and enables significant reduction of particulate in commercial vehicles to levels below 0.027 g/kWh under Japan's D13 mode operating conditions. The authors describe development results of the DPR.
Technical Paper

Development of an Intelligent Truck in ASV-2 Project in Japan

2001-10-01
2001-01-3404
The Advanced Safety Vehicle (ASV) project phase 2 was organized by the Japanese ministry of lands, infrastructures and transport in 1996 as a five year project. Hino Motors participated in the project and developed an intelligent truck “HINO ASV-2”. HINO ASV-2 was equipped with safety systems for accident prevention and accident avoidance, which were most effective in reducing accidents in freight transport. These intelligent systems aimed to reduce driving fatigue, minimize the chance of driver’s mistake, and prevent the occurrence of accidents. Human-machine interface, and front underrun protection device were also studied. Through the development of the ASV systems, the feasibility and basic functions of these systems were studied. Further development is necessary to implement the ASV systems in production vehicles.
Technical Paper

Study on Exterior Idling Sound Quality Evaluation Method for Diesel Engine Trucks

1999-05-17
1999-01-1739
In diesel engine trucks, the sound quality improvement as well as the noise level reduction is demanded because of their annoying exterior noise. The semantic differential method was applied to evaluate the sound quality of trucks. In order to improve the analytical accuracy, subjects who can evaluate the characteristics of sound quality were statistically selected among all the subjects. Comfortability and powerfulness were extracted as the principal components by using the data of the selected subjects. It has been clarified that the comfortability strongly relates to high frequency element ratio, high frequency level, etc. The powerfulness strongly relates to the Zwicker loudness.
Technical Paper

Development of “Camion” Truck Winner at '97 Dakar Rally

1998-11-16
983065
In the '97 Dakar Rally, Hino FT model, 8,000cc engine truck, won 1st, 2nd and 3rd places by defeating upper class trucks having engine of 19,000cc. The average speed of the '97 Hino model was increased more than 15 km/h over the '96 model by improving the riding comfort and handling stability. Larger diameter tires, and softer parabolic leaf springs with long and inclined axle-locus for reducing road impact, gas charged dampers, suspension rods which control compliance-steer-motion and wind-up motion of unsprung masses were adopted for the '97 model.
Technical Paper

Development of Diesel Combustion for Commercial Vehicles

1997-08-06
972685
Historically the high speed diesel engine for commercial vehicles has been developed along with its combustion system in compliance with political and economical changes. After the 1970's, stricter exhaust emission regulations and fuel economy requirements induced combustion developments and application of turbocharged and inter cooled engines. From the late 1980's, high pressure fuel injection has been investigated and recognized as an essential tool for lowering emissions especially of particulate matter. Although turbulence effects on both in-cylinder air motion and during the combustion process are quite effective, they show different phenomena in conventional and advanced high pressure fuel injection systems. In the 1990's, multiple injection with high pressure has been attempted for further reduction of NOx and particulate matter.
X