Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Virtual Engine System Prototyping with High-Resolution FFT for Digital Knock Detection Using CPU Model-Based Hardware/Software Co-simulation

We have developed a full virtual engine system prototyping platform with 4-cylinder engine plant model, SH-2A CPU hardware model, and object code level software including OSEK OS. The virtual engine system prototyping platform can run simulation of an engine control system and digital knock detection system including 64-pt FFT computations that provide required high-resolution DSP capability for detection and control. To help the system design, debugging, and evaluation, the virtual system prototyping consists of behavior analyzer which can provide the visualization of useful CPU internal information for control algorithm tuning, RTOS optimization, and CPU architecture development. Thus the co-simulation enables time and cost saving at validation stage as validation can be performed at the design stage before production of actual components.
Technical Paper

CPU Model-based Hardware/Software Co-design for Real-Time Embedded Control Systems

This paper proposes a new development method for highly reliable real-time embedded control systems using a CPU model-based hardware/software co-simulation. We take an approach that allows the full simulation of the virtual mechanical control system including CPU and object code level software. In this paper, Renesas SH-2A microcontroller model was developed on CoMET™ platform from VaST Systems Technology. A ETC (Electronic Throttle Control) system and engine control system were chosen to prove this concept. The ETB (Electronic Throttle Body) model on Saber® simulator from Synopsys® or engine model on MATLAB®/Simulink® simulator from MathWorks can be simulated with the SH-2A model. To help the system design, debug and evaluation, we developed an integrated behavior analyzer, which can display CPU behavior graphically during the simulation without affecting the simulation result, such as task level CPU load, interrupt statistics, software variable transition chart, and so on.
Technical Paper

Optical Fiber Gyroscopes for Automobiles

This paper reviews the technological aspects and characteristics of optical fiber gyroscopes, and discusses their automotive applications. The optical system of an all-fiber gyroscope and the fiber optic components to build it are described. An optical phase modulation scheme to improve the sensitivity and the signal processing for the modulated output are discussed. The specifications of some packaged optical fiber gyroscopes are explained. An earth's rotation detection experiment is demonstrated to show the higher performance. The potential automotive related applications of the gyroscope are forecasted. One of the off-board uses of the sensor is the vibration measurements of a vehicle. When used onboard, the optical fiber gyroscopes will improve the navigation accuracy. A navigation result utilized the sensor with a map matching algorithm is reported. The gyroscopes may also be applied to future chassis controls.