Refine Your Search

Topic

Author

Search Results

Technical Paper

Proposal for Relaxation of Airspace Restrictions Based on Flight-Continuation Possibility of UAVs in Event of Failure

2024-03-05
2024-01-1912
The flight area of drones and other unmanned aerial vehicles (UAVs) had been highly restricted but has been relaxing, including flights beyond the scope of sight. Deregulation without aircraft-reliability improvement increases the risk of accidents. However, demanding high reliability for all aircraft leads to an increase in the price of the aircraft. Therefore, if airspace restrictions are relaxed for more reliable aircraft, the cost of higher reliability and its benefits can be balanced. This will improve efficiency and optimize cost-effectiveness. The purpose of this proposal is to balance the cost of aircraft-reliability improvement (which allows flight to continue in the event of a failure) and its advantages. Specifically, the author proposes rules that apply more relaxed airspace restrictions to UAVs with higher FCLs (Flight Continuity Possibility Levels) and stricter airspace restrictions to those with lower FCLs.
Technical Paper

Development of Flexible System for Demand and Supply Imbalance considering Battery Life

2023-09-29
2023-32-0111
We developed a flexible system with EVs for solving imbalance between electricity demand and supply avoiding degradation of EV’s battery life. Such flexible systems are commonly being examined but nothing the system which uses battery considering impact of its battery life to avoid shorten EV’s operation period. Therefore, we developed one of methodologies to select preferable load facilities based on imbalance trend and flexible prices. The imbalance trend means a duration of the imbalance. The flexible prices mean operation cost to provide flexibility. By comparing the flexible prices and operation profit, it is possible to prevent unnecessary operation. As a result, we demonstrated our flexible system works as designed based on these parameters.
Technical Paper

Automatic Scenario Generation for Simulation-Based Testing of AD/ADAS

2023-04-11
2023-01-0825
Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADAS) are being actively developed to prevent traffic accidents. As the complexity of AD/ADAS increases, the number of test scenarios increases as well. An efficient development process that meets AD/ADAS quality and performance specifications is thus required. The European New Car Assessment Programme (Euro NCAP®1) and the Japan Automobile Manufacturers Association (JAMA®2) have both defined test scenarios, but some of these scenarios are difficult to carry out with real-vehicle testing due to the risk of harm to human participants. Due to the challenge of covering various scenarios and situations with only real-vehicle testing, we utilize simulation-based testing in this work. Specifically, we construct a Model-in-the-Loop Simulation (MILS) environment for virtual testing of AD/ADAS control logic.
Technical Paper

Development of High Frequency Response Battery and Enhancement of Power Density for Inverter

2021-04-06
2021-01-0753
We propose low inductance batteries and enhance power density for a inverter. Conventionally, the capacitors are used for smoothing ripple of the inverter. The low inductance battery which responds at carrier frequency of inverter can reduce the capacity of the smoothing capacitors and enable to enhance power density for the inverter. For reducing the inductance, it is necessary to separately understand the impact of electrochemical reaction under wide range of assumed conditions and structural reaction on frequency characteristics. Furthermore, it is also necessary to design the low inductance batteries based on combining the both of characteristics. However, there are no study focusing on modeling by combining such different domains. Therefore, we made original inductance model inside battery considering frequency characteristics among all materials and structural influence with electromagnetic field analysis simulator.
Technical Paper

Research on Subjective Rating Prediction Method for Ride Comfort with Learning

2020-09-30
2020-01-1566
Suspension is an important chassis part which is vital to ride comfort [1]. However, it is difficult to achieve our targeted comfortability level in a short time. Therefore, improving efficiency of damper development is our primary challenge. We have launched a project which aims to reduce the workload on developing dampers by introducing analytical approaches to the improvement of ride comfort. To be more specific, we have been putting effort into developing the damping force prediction, the vehicle dynamics prediction and subjective rating prediction. This paper describes subjective rating prediction method which output a subjective rating corresponding to the physical value of the vehicle dynamics with deep learning. As a result of verification using objective data which was not used for learning process, DNN (Deep Neural Network) prediction method could fairly precisely predict subjective rating of the expert driver.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Development of a Combined Battery System for Electric Vehicles with Battery Lifespan Enhancements

2018-04-03
2018-01-0448
We propose a combined battery system (CBS) for low cost electric vehicles (EVs) to enhance battery life. The EVs popularly called as Neighborhood Electric Vehicle or Low-Speed-Electric-Vehicle are spreading in developing countries. Conventionally the EVs batteries consist of high energy density cells, and we call it as energy cells (EC). A major issue with the EVs is high operational costs mainly due to high battery cost and short lifespan of the ECs. In this study, we develop a CBS consisting of a combination of following two kinds of batteries: i) EC which is the main energy source for the EV, and ii) a battery having high power density also called as power cells (PC) which is more suitable to bear high charge-discharge currents. The key feature of the proposed system is to minimize the size of additional battery by using our high power lithium ion battery. We performed experiments to estimate EC life for several capacity values of the PC.
Technical Paper

Evaluation of Hitachi Electric Vehicle Combined Battery System Lifespan in India

2018-04-03
2018-01-0447
We have developed a drive cycle (DC) to test Hitachi’s combined battery system (CBS) for electric vehicles (EVs) having battery lifespan enhancements. Conventionally EV batteries consist of high energy density cells, and we call them as energy cells (EC). A major issue with the EVs is high operational costs mainly due to short lifespan of the ECs. CBS almost doubles the EC and thus overall battery system lifespan, as per the evaluation over a WLTP based method. We want to test the CBS under Indian conditions which has predominantly hot weather, and traffic jam scenarios. Battery deterioration and thus its lifespan is sensitive to traffic conditions and ambient temperature. Hence, it was needed to evaluate the CBS over an Indian DC and use 40°C as ambient temperature. However, it was difficult to carry out the tests since there is no standard Indian DC for small / light weight four wheelers.
Technical Paper

Evaluation of Parallel Executions on Multiple Virtual ECU Systems

2018-04-03
2018-01-0011
We have developed a cooperative simulation environment for multiple electronic control units (ECUs) including a parallel executions mechanism to improve the test efficiency of a system, which was designed with multiple ECUs for autonomous driving. And we have applied it to a power window system for multiple ECUs with a controller area network (CAN). The power window model consists of an electronic-mechanical model and a CPU model. Each simulator with a different executions speed operates in parallel using a synchronization mechanism that exchanges data outputted from each simulator at a constant cycle. A virtual ECU simulated microcontroller hardware operations and executed its control program step-by-step in binary code to test software for the product version. As co-simulation technology, a mechanism that synchronously executes heterogeneous simulators and a model of an in-vehicle communication CAN connecting each ECU were developed.
Technical Paper

Transient Vibration Simulation of Motor Gearbox Assembly Driven by a PWM Inverter

2017-06-05
2017-01-1892
Predicting the vibration of a motor gearbox assembly driven by a PWM inverter in the early stages of development is demanding because the assembly is one of the dominant noise sources of electric vehicles (EVs). In this paper, we propose a simulation model that can predict the transient vibration excited by gear meshing, reaction force from the mount, and electromagnetic forces including the carrier frequency component of the inverter up to 10 kHz. By utilizing the techniques of structural model reduction and state space modeling, the proposed model can predict the vibration of assembly in the operating condition with a system level EV simulator. A verification test was conducted to compare the simulation results with the running test results of the EV.
Technical Paper

Virtual FMEA and Its Application to Software Verification of Electric Power Steering System

2017-03-28
2017-01-0066
This paper presents the “Virtual Failure Mode and Effects Analysis (vFMEA)” system, which is a high-fidelity electrical-failure-simulation platform, and applies it to the software verification of an electric power steering (EPS) system. The vFMEA system enables engineers to dynamically inject a drift fault into a circuit model of the electronic control unit (ECU) of an EPS system, to analyze system-level failure effects, and to verify software-implemented safety mechanisms, which consequently reduces both cost and time of development. The vFMEA system can verify test cases that cannot be verified using an actual ECU and can improve test coverage as well. It consists of a cycle-accurate microcontroller model with mass-production software implemented in binary format, analog and digital circuit models, mechanical models, and a state-triggered fault-injection mechanism.
Technical Paper

Development of Predictive Powertrain State Switching Control for Eco-Saving ACC

2017-03-28
2017-01-0024
In recent years, improvement of in-use fuel economy is required with tightening of exhaust emission regulation. We assume that one of the most effective solutions is ACC (Adaptive Cruise Control), which can control a powertrain accurately more than a driver. We have been developing a fuel saving ADAS (Advanced Driver Assistance System) application named “Sailing-ACC”. Sailing-ACC system uses sailing stop technology which stops engine fuel injection, and disengages a clutch coupling a transmission when a vehicle does not need acceleration torque. This system has a potential to greatly improve fuel efficiency. In this paper, we present a predictive powertrain state switching algorithm using external information (route information, preceding vehicle information). This algorithm calculates appropriate switching timing between a sailing stop mode and an acceleration mode to generate a “pulse-and-glide” pattern.
Journal Article

Multi-Fidelity Total Integrated Simulation Technology for High Pressure Pump with Squeeze Film Effect

2017-03-28
2017-01-1325
Automotive fuel can be efficiently combusted by injecting it into the cylinders at high pressure to atomize it to pass the regulations for exhaust gas and fuel economy. For this reason, automotive companies have developed direct injection engines, which can inject gasoline into the cylinders directly. Furthermore, the demand for lower-noise high pressure pumps is also increasing from the viewpoint of automotive comfort. Since the valve velocity and noise level will increase as the pressure in fuel pumps increases, noise problems need to be solved under the high pressure conditions. Accordingly, the valve motion should be predicted with high accuracy under operating conditions to evaluate the noise caused by valve impingement. In addition, the squeeze film effect phenomenon will occur in the physical fuel pumps affect the prediction of the noise level caused by valve impingement.
Technical Paper

Numerical Study of Internal Combustion Engine using OpenFOAM®

2016-04-05
2016-01-1346
We developed the numerical simulation tool by using OpenFOAM® and in-house simulation codes for Gasoline Direct Injection (GDI) engine in order to carry out the precise investigation of the throughout process from the internal nozzle flow to the fuel/air mixture in engines. For the piston/valve motions, a mapping approach is employed and implemented in this study. In the meantime, the spray atomization including the liquid-columnbreakup region and the secondary-breakup region are simulated by combining the different numerical approaches applied to each region. By connecting the result of liquid-column-breakup simulation to the secondary-breakup simulation, the regions which have different physical phenomena with different length scales are seamlessly jointed; i.e., the velocity and position of droplets predicted by the liquid-column-breakup simulation is used in the secondary breakup simulation so that the initial velocity and position of droplets are transferred.
Technical Paper

Development of Breath-Alcohol-Detection System

2016-04-05
2016-01-1498
The problem of high fatal accident rates due to drunk driving persists, and must be reduced. This paper reports on a prototype system mounted on a car mock-up and a prototype portable system that enables the checking of the drivers’ sobriety using a breath-alcohol sensor. The sensor unit consists of a water-vapor-sensor and three semiconductor gas sensors for ethanol, acetaldehyde, and hydrogen. One of the systems’ features is that they can detect water vapor from human-exhaled breath to prevent false detection with fake gases. Each gas concentration was calculated by applying an algorithm based on a differential evolution method. To quickly detect the water vapor in exhaled breath, we applied an AC voltage between the two electrodes of the breath-water-vapor sensor and used our alcohol-detection algorithm. The ethanol level was automatically calculated from the three gas sensors as soon as the water vapor was detected.
Technical Paper

A Virtual ECU and Its Application to Control System Analysis - Power Window System Demonstration

2016-04-05
2016-01-0022
A virtual power window control system was built in order to look into and demonstrate applications of microcontroller models. A virtual ECU simulated microcontroller hardware operations. The microcontroller program, which was written in binary digital codes, was executed step-by-step as the virtual ECU simulation went on. Thus, production-ready codes of ECUs are of primary interest in this research. The mechanical system of the power window, the DC motor to lift the window glass, the H-bridge MOSFET drivers, and the current sensing circuit to detect window locking are also modeled. This means that the hardware system of the control system was precisely modeled in terms of mechanical and circuit components. By integrating these models into continuous and discrete co-simulation, the power window control system was analyzed in detail from the microscopic command execution of the microcontroller to the macroscopic motion of the window mechanism altogether.
Technical Paper

A Safety Concept based on a Safety Sustainer for Highly Automated Driving Systems

2016-04-05
2016-01-0130
Highly automated driving systems have a responsibility to keep a vehicle safe even in abnormal conditions such as random or systematic failures. However, creating redundancy in a system to respond to failures increases the cost of the system, and simple redundancy cannot detect systematic failures because some systematic failures occur in each system at the same time. Systematic failures in automated driving systems cannot be verified sufficiently during the development phase due to numerous patterns of parameters input from outside the system. A safety concept based on a “safety sustainer” for highly automated driving systems is proposed. The safety sustainer is designed for keeping a vehicle in a safe state for several seconds if a failure occurs in the system and notifying the driver that the system is in failure mode and requesting the driver to take over control of the vehicle.
Technical Paper

Investigation of a Detecting Technology of Combustion Conditions Using the Ion-Current Sensor

2015-09-01
2015-01-1983
In previous study, a method of combustion detection for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated [1]. In addition, an ion-current sensor has been used as a countermeasure against abnormal combustion with downsizing and higher compression ratio engines. An ion-current sensor has been newly adopted in engine systems. In this study, detection performance of combustion conditions in HCCI and spark ignition (SI) using with the ion-current sensor was estimated. The purpose of this study was to confirm detectable combustion conditions using with the ion-current sensor, and to confirm a requirement of applied voltage for the ion-current sensor. A detection signal of the ion-current sensor was changed by combustion style (HCCI,SI). Experimental results showed a heat release rate increased with ion signals increasing approximately at the same time in HCCI and SI.
Technical Paper

Volumetric Efficiency Improvement of High-Pressure Fuel Pump for Gasoline Direct Injection Engine

2015-04-14
2015-01-1273
A recent trend in high-pressure gasoline pumps is increasing the outlet pressure. One of the most important topics for increasing this pressure is improving volumetric efficiency. Therefore, the purpose of this research is to quantify the breakdown of efficiency loss factors and to suggest a new design for improving volumetric efficiency. Authors developed a method of quantifying the efficiency loss breakdown of high-pressure gasoline pumps by using 1D fluid pressure simulation results and conducting evaluation experiments regarding sensitivity. Authors separated pump movement into three phases; suction, compression, and delivery. Authors then investigated the loss factors in each phase. As a result, authors obtained an equation for predicting the final output volume. The equation consists of a limit output volume and other types of leakage volumes.
Technical Paper

Method for Determining Thermal Resistances in Coupled Simulator: For Electric Valve Timing Control System

2015-04-14
2015-01-1301
We developed a thermal calculation 1D simulator for an electric valve timing control system (VTC). A VTC can optimize the open and close timing of the intake and exhaust valves depending on the driving situation. Since a conventional VTC is driven hydraulically, the challenges are response speed and operation limit at low temperature. Our company has been developing an electric VTC for quick response and expansion of operating conditions. Currently, it is necessary to optimize the motor and reduction gear design to balance quicker response with downsizing. Therefore, a coupled simulator that can calculate electricity, mechanics, control, and thermo characteristics is required. In 1D simulation, a thermal network method is commonly used for thermal calculation. However, an electric VTC is attached to the end of a camshaft; therefore, determining thermal resistances is difficult. We propose a method of determining thermal resistances, using both theoretical and experimental approaches.
X