Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Fatigue Analysis and Rapid Design Process of Anti-vibration Rubber Parts for Automobiles

2024-04-09
2024-01-2255
In recent years, an increase in vehicle weight due to the electrification of automobiles, specifically EVs, has increased the input loads on anti-vibration rubber parts. Moreover, the characteristics of these loads have also changed due to the rotational drive of electric motors, regenerative braking, and other factors. When designing a vehicle, in advance it is necessary to set specifications that take into account the spring characteristics and durability of the anti-vibration rubber parts in order to meet functional requirements. In this study, the hyperelastic and fatigue characteristics (S-N diagram and Haigh diagram) of Rubbers which is widely used for anti-vibration rubber parts, were experimentally obtained, and structural and fatigue analyses using FEM (Finite Element Method) were conducted in conjunction with spring and fatigue tests of anti-vibration rubber parts to determine the correlation between their spring and fatigue characteristics.
Technical Paper

Investigation of Fuel Economy Prediction Technology Considering Engine Thermal Flow for Hybrid Electric Vehicle, and Application to Vehicle Development Process

2024-04-09
2024-01-2408
Powertrain development requires an efficient development process with no rework and model-based development (MBD). In addition, to performance design that achieves low CO2 emissions is also required. Furthermore, it also demands fuel economy performance considering real-world usage conditions, and in North America, the EPA (U.S. Environmental Protection Agency) 5-cycle, which evaluates performance in a combination of various environments, is applied. This evaluation mode necessitates predicting performance while considering engine heat flow. Particularly, simulation technology that considers behavior based on engine temperature for Hybrid Electric Vehicle (HEV) is necessary. Additionally, in the development trend of vehicle aerodynamic improvement, variable devices like Active Grille Shutter (AGS) are utilized to contribute to reducing CO2 emissions.
Technical Paper

New 2.0 L Inline 4-Cylinder Gasoline Direct Injection Engine

2023-04-11
2023-01-0400
Honda has developed a new hybrid system targeting the C and D segments that aims for the latest environmental performance, high fuel economy, and enhanced acceleration feeling in driving. The new engine to be applied to this new hybrid system has been developed with the goal of expanding the high thermal efficiency range, realizing the latest environmental performance, and high quietness. The new engine has adopted the Atkinson cycle and cooled exhaust gas recirculation (EGR) carried over from the previous model [1], and employed an in-cylinder direct fuel injection system with fuel injection pressure of 35 MPa. The combustion chamber and ports have been newly designed to match the fuel system changes. By realizing high-speed combustion, the engine realized a high compression ratio with the mechanical compression ratio of 13.9.
Technical Paper

On Road Fuel Economy Impact by the Aerodynamic Specifications under the Natural Wind

2020-04-14
2020-01-0678
According to some papers, the label fuel economy and the actual fuel economy experienced by the customers may exhibit a gap. One of the reasons may stem from the aerodynamic drag variations due to the natural wind. The fuel consumption is measured through bench test under several driving modes by using the road load as input condition. The road load is measured through the coast down test under less wind ambient conditions as determined by each regulation. The present paper aims to analyze the natural wind conditions encountered by the vehicle on public roads and to operate a comparison between the fuel consumptions and the driving energy. In this paper, the driving energy is calculated by the aerodynamic drag from the natural wind specifications and driving conditions. This driving energy and the fuel consumptions show good correlation. The fuel consumption is obtained from the vehicle Engine control unit(ECU) data.
Technical Paper

Onboard Ethanol-Gasoline Separation System for Octane-on-Demand Vehicle

2020-04-14
2020-01-0350
Bioethanol is being used as an alternative fuel throughout the world based on considerations of reduction of CO2 emissions and sustainability. It is widely known that ethanol has an advantage of high anti-knock quality. In order to use the ethanol in ethanol-blended gasoline to control knocking, the research discussed in this paper sought to develop a fuel separation system that would separate ethanol-blended gasoline into a high-octane-number fuel (high-ethanol-concentration fuel) and a low-octane-number fuel (low-ethanol-concentration fuel) in the vehicle. The research developed a small fuel separation system, and employed a layout in which the system was fitted in the fuel tank based on considerations of reducing the effect on cabin space and maintaining safety in the event of a collision. The total volume of the components fitted in the fuel tank is 6.6 liters.
Technical Paper

Engine Sound Design Process with Utilization of Industrial Styling Design

2020-04-14
2020-01-0402
This report will introduce a new engine sound design concept and propose a design process. In sound design for automotive development of popular vehicles, it is common to seek to enhance the state of the existing marketed vehicle in order to meet further demands from customers. For standout models such as sports vehicles and flagship vehicles, sound design commonly reflects the sound ideals of the manufacturer’s branding or engineers. Each case has common point that the sound direction is determined by itself clearly. However, in this way, it is difficult to create abstract concept sound. Because it is no direction for the sound. Therefore, this paper examines ways to achieve a new sound that satisfies a sound concept based on an unprecedented abstract concept “wood”. The reason why sound concept is “wood”, it is the difficult to make as a new engine sound and good study to reveal usefulness of new sound design process.
Technical Paper

LES Modeling Study on Cycle-to-Cycle Variations in a DISI Engine

2020-04-14
2020-01-0242
The reduction of cycle-to-cycle variations (CCV) is a prerequisite for the development and control of spark-ignition engines with increased efficiency and reduced engine-out emissions. To this end, Large-Eddy Simulations (LES) can improve the understanding of stochastic in-cylinder phenomena during the engine design process, if the employed modeling approach is sufficiently accurate. In this work, an inhouse code has been used to investigate CCV in a direct-injected spark ignition (DISI) engine under fuel-lean conditions with respect to a stoichiometric baseline operating point. It is shown that the crank angle when a characteristic fuel mass fraction is burned, e.g. MFB50, correlates with the equivalence ratio computed as a local average in the vicinity of the spark plug. The lean operating point exhibits significant CCV, which are shown to be correlated also with the in-cylinder subfilter-scale (SFS) kinetic energy.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Technical Paper

Elucidation of the Sulfide Corrosion Mechanism in Piston Pin Bushings

2020-04-14
2020-01-1079
Recent trends to downsize engines have resulted in lighter weight and greater compactness. At the same time, however, power density has increased due to the addition of turbocharger and other such means to supplement engine power and torque, and this has increased the thermal and mechanical load. In this kind of environment, corrosion of the copper alloy bushing (piston pin bushing) that is press-fitted in the small end of the connecting rod becomes an issue. The material used in automobile bearings, of which the bushing is a typical example, is known to undergo sulfidation corrosion through reaction with an extreme-pressure additive Zinc Dialkyldithiophosphate (ZnDTP) in the lubricating oil. However, that reaction path has not been clarified. The purpose of the present research, therefore, is to clarify the reaction path of ZnDTP and copper in an actual engine environment.
Journal Article

Metal Belt CVT Seizure Monitoring System Using Wear Debris Analysis and Particle Measurement

2020-04-14
2020-01-0907
An apparatus that automatically samples lubricating oil and measures the size distribution of particles in the oil has been developed in order to monitor the state of engines and transmissions in operation. It is a widely known fact that when an engine or transmission seizes or experiences unusual wear, comparatively large pieces of wear debris are released. The goal of the use of the apparatus is to detect these particles of wear debris, stop testing before damage occurs, and clarify the causes. Seizure was, therefore, artificially induced in a transmission, and the wear debris in the oil was closely analyzed following the test. The results showed that when the simulated seizure occurred, large, elongated particles of wear debris were produced. Similar wear debris was observed in oil recovered from the market following the seizure of a component, and at present this is believed to be a type of wear debris characteristic of seizure.
Journal Article

Development of Cooling Fan Model and Heat Exchange Model of Condenser to Predict the Cooling and the Heat Resistance Performance of Vehicle

2020-04-14
2020-01-0157
The cooling performance and the heat resistance performance of commercial vehicle are balanced with aerodynamic performance, output power of powertrain, styling, cost and many other parameters. Therefore, it is desired to predict the cooling performance and the heat resistance performance with high accuracy at the early stage of development. Among the three basic forms of heat transfer (conduction, convection and radiation), solving thermal conduction accurately is difficult, because modeling of “correct shape” and setting of coefficient of thermal conductivity for each material need many of time and efforts at the early stage of development. Correct shape means that each part should be attached correctly to generate the solid mesh with high quality. Therefore, it is more efficient and realistic method to predict the air temperature distribution around the rubber/resin part instead of using the surface temperature at the preliminary design stage.
Technical Paper

Powertrain Thermal System Development for Small BEV

2020-04-14
2020-01-1383
The dynamic performance of battery electric vehicles (BEV) is affected by battery output power, which depends on state of charge (SOC) and the temperature of battery cells. The temperature of the batteries varies in particular with the environment, in which the user stores the vehicle, and the battery output power. It is therefore necessary to employ thermal management systems that can control the battery temperature within the optimal range under severely hot and cold conditions in BEVs. A highly sophisticated thermal management system and its operation strategy were developed to fulfill the above requirements. The powertrain components to be thermo-controlled were located into two coolant circuits having different temperature range. The compact and efficient front-end heat exchangers were designed to optimally balance the cooling performance of powertrain, cabin comfort, vehicle aerodynamics and the vehicle design.
Technical Paper

Multi-Objective Optimization of Control Parameters for Hybrid and Electric Vehicles Using 1D CAE Model

2020-04-14
2020-01-0247
Since the operation of the powertrain system and the engine speed and torque are determined in the ECU in hybrid vehicles, control parameters in these vehicles are more sensitive to a variety of performance factors than those employed in conventional vehicles. The three performance factors acceleration performance, NVH and fuel consumption in particular are in a tradeoff relationship, the calibration of control parameters in order to satisfy these performance targets entail considerable development costs. Given this, it is possible to increase the efficiency of hybrid vehicle development by determining Pareto design solutions for the three performance factors via multi-objective optimization using CAE, and selecting target performance and control parameters based on these Pareto design solutions.
Technical Paper

An Investigation of a Reduction Method of the Body Vibration at a Situation of Engine Start-Stop

2019-04-02
2019-01-0785
In recent years, electrification of powertrains has been promoted to improve fuel efficiency and CO2 emissions. Along with electrification, it is possible to reduce engine usage frequency and improve the fuel efficiency in traveling. Especially in a hybrid electric vehicle (HEV), the state changes from motor assist mode to engine firing mode. As a result, stay time in eigenvalue of a powertrain is shortened, and vibration of the vehicle body at the engine start situation is able to be reduced as compared with conventional engine-driven vehicle. However, since the HEV is equipped with a high compression ratio engine for improving fuel economy, there is cause for concern that excitation force generated by the powertrain at the time of engine start increases. Also, the vehicle body vibration at engine start situations requires further consideration, because the operation frequency of engine decreases.
Technical Paper

Analysis of the Pressure Drop Increase Mechanism by Ash Accumulated of Coated GPF

2019-04-02
2019-01-0981
With accelerating exhaust gas regulations in recent years, not only CO / HC / NOx but also PN regulation represented by Euro 6 d, China 6 are getting stricter. PN reduction by engine combustion technology development also progresses, but considering RDE, PN reduction by after treatment technology is also indispensable. To reduce PN exhausted from the gasoline engine, it is effective to equip GPF with a filter structure. Considering the installation of GPF in limited space, we developed a system that so far replaces the second TWC with GPF for the TWC 2 bed system. In order to replace the second TWC with GPF, we chose the coated GPF with filtering and TWC functions. Since the initial pressure drop and the catalyst amount (purification performance) of coated GPF have a conflicting relationship, we developed the coated GPF that can achieve both the low initial pressure drop and high purification performance.
Journal Article

Designing for Turbine Housing Weight Reduction Using Thermal Fatigue Crack Propagation Prediction Technology

2019-04-02
2019-01-0533
Turbine housings in car engine turbochargers, which use costly stainless steel castings, account for nearly 50% of the parts cost of a turbocharger. They are also the component which controls the competitiveness of the turbocharger, in terms of both function and cost. In this research, focusing on thermal fatigue resistance which is one of the main functions demanded of a turbine housing, achieving reduction in wall thickness while securing sufficient thermal fatigue resistance, it is possible to reduce the amount of material used in the turbine housing and aimed for cost reduction. Therefore, we built a method to quantitatively predict, using 3D FEM, the lifespan from the initiation of thermal fatigue cracking to the formation of a penetrating crack which leads to gas leakage.
Technical Paper

Development of Low Temperature Active Three Way Catalyst

2019-04-02
2019-01-1293
In recent years, fuel efficiency has been improved by using many technologies such as downsizing engine, turbocharger and direct injection to reduce CO2 emissions from vehicle. However, the temperature of the exhaust gas from the engines using these technologies becomes lower than that form conventional one. That increases the difficulty for three-way catalyst (TWC) to purify CO, HC and NOx enough because TWC is not warmed up just after engine starting. In order to reduce cold emission mentioned above, we have been studying the warmup strategy of which the key property is thermal mass of TWC. To achieve early warmup, thermal mass of TWC is reduced by lightening the weight of (1) substrate and (2) catalytic materials, namely washcoat amount. Along with the strategy, we have developed TWC with lightweight substrate and applied it from the 2016 model year CIVIC.
Technical Paper

Analysis of Rotational Vibration Mechanism of Camshaft at High Engine Speed in Engines with In-Line Four-Cylinder DOHC Configuration

2018-10-30
2018-32-0072
In engines having an inline four cylinder DOHC configuration, the rotational vibrations of camshaft increase at high engine speeds above 10000 rpm, causing an increase of tension in the cam chain. It is therefore difficult to realize an optimum designing of a cam chain system when the durability has to be taken into considerations. Using the simulation we analyzed in this research how the rotational vibrations and tension increase at high engine speeds in an inline four cylinder DOHC engine. As its consequent, it is understood that the increases of rotational vibrations and tension caused by the resonance of the spring mass vibration system in which the cam chain serves as springs and the camshafts as the equivalent masses. Also it is found out that the vibration system is of a unique non-linear type in which the resonance of the fourth order frequency is also excited by the crankshaft torque fluctuations of the second order frequency.
Technical Paper

Diesel CAI Combustion in Uniflow Scavenging 2-Stroke Engine Provided with Port Fuel Injection Device

2018-10-30
2018-32-0015
We studied a simple and cost effective controlled auto ignition (CAI) combustion engine in order to achieve simultaneous reduction of NOx and soot, which are issues in diffusion combustion. The engine type was a uniflow scavenging 2-stroke engine, and the fuel used was diesel, as is common in diesel engines. We examined the position of the injector that effectively forms the premixture and realized stable operation with diesel fuel by the low pressure fuel injection device for port fuel injection (PFI), and it was found that the CAI combustion ignition timing can be controlled through setting the air/fuel ratio that obtains the optimal ignition timing per operation conditions.
Journal Article

Development of Electric Powertrain for CLARITY PLUG-IN HYBRID

2018-04-03
2018-01-0415
Honda has developed the 2018 model CLARITY PLUG-IN HYBRID. Honda’s new plug-in hybrid is a midsize sedan and shares a body platform with the CLARITY FUEL CELL and the CLARITY ELECTRIC. The vehicle’s electric powertrain boosts driving performance as an electric vehicle (EV) over Honda’s previous plug-in hybrid. The CLARITY PLUG-IN HYBRID’s electric powertrain consists of a traction motor and generator built into the transmission, a Power Control Unit (PCU) positioned above the transmission, an Intelligent Power Unit (IPU) fitted under the floor, and an onboard charger fitted below the rear trunk. The PCU integrates an inverter that drives the traction motor, an inverter that drives the generator, and a DC-DC converter to boost battery voltage (referred to as a “Voltage Control Unit (VCU)” below).
X