Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Simulation and Experimental Research on Compression Release Engine Brake Performance

2018-04-03
2018-01-1382
A 3D grid model of engine brake is established for an automobile engine. The dynamic compression release braking process is simulated by using this model. In the process of engine braking, the movement of valve and piston causes changes of the internal flow field of the engine. In this paper, the movement of valve and piston were defined by using the dynamic grid technology, so that the numerical simulation is closer to the actual situation via the updating of grid. Based on the relevant parameters of compression release engine brake (including the opening of the exhaust valve, the engine speed and the exhaust back pressure), the pressure and power of the compression release braking system were simulated under the conditions of multiple operating conditions and experimental verification was carried out. The results showed that the braking works of the compression release engine brake are mainly from the compression stroke and the exhaust stroke.
Technical Paper

Investigation of the Influence of an Hydraulically Interconnected Suspension (HIS) on Steady-State Cornering

2017-03-28
2017-01-0430
This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
Technical Paper

Study on Vehicle Collision Predicting using Vehicle Acceleration and Angular Velocity of Brake Pedal

2015-04-14
2015-01-1405
The combination of passive and active vehicle safety technologies can effectively improve vehicle safety. Most of them predict vehicle crashes using radar or video, but they can't be applied extensively currently due to the high cost. Another collision forecasting method is more economic which is based on the driver behavior and vehicle status, such as the acceleration, angular velocity of the brake pedal and so on. However, the acceleration and angular velocity of the brake pedal will change with the driver and the vehicle type. In order to study the effect of different drivers and vehicle types on the braking acceleration and angular velocity of the brake pedal, six volunteers were asked to drive five vehicles for simulating the working conditions of emergency braking, normal braking, inching braking and passing barricades under different velocities. All the tests were conducted on asphalt road, and comprehensive experimental design was used to arrange tests.
Journal Article

Vehicle Parameter Estimation Based on Full-Car Dynamic Testing

2015-04-14
2015-01-0636
Effectively obtaining physical parameters for vehicle dynamic model is the key to successfully performing any computer-based dynamic analysis, control strategy development or optimization. For a spring and lump mass vehicle model, which is a type of vehicle model widely used, its physical parameters include sprung mass, unsprung mass, inertial properties of the sprung mass, stiffness and damping coefficient of suspension and tire, etc. To minimize error, the paper proposes a method to estimate these parameters from vehicle modal parameters which are in turn obtained through full-car dynamic testing. To verify its effectiveness, a visual vehicle with a set of given parameters, build in the Adams(Automatic Dynamic Analysis of Mechanical Systems)/Car environment, is used to perform the dynamic testing and provide the testing data for the parameter estimation.
Technical Paper

Implementation and Experimental Study of a Novel Air Spring Combined with Hydraulically Interconnected Suspension to Enhance Roll Stiffness on Buses

2015-04-14
2015-01-0652
Air spring due to its superior ride comfort performance has been widely used in distance passenger transporting vehicles. Since the requirements for ride comfort and handling performance are contradict to each other, handling performance and even roll stability are sacrificed to some extent to obtain good ride comfort. Due to the complex terrain and limited manufacturing level, in the past several years, bus rollover accidents with serious casualties have been reported frequently and bus safety has attracted more and more attention from bus manufacturers in China. On one hand the bus standards have to be raised, and on the other hand, novel solutions which can effectively improve the roll stability of air spring bus are needed to replace the inadequacy of anti-roll bars.
Technical Paper

Experimental Investigation of Interconnected Hydraulic Suspensions with Different Configurations to Soften Warp Mode for Improving Off-Road Vehicle Trafficability

2015-04-14
2015-01-0658
Hydraulic suspension systems with different interconnected configurations can decouple suspension mode and improve performance of a particular mode. In this paper, two types of interconnected suspensions are compared for off-road vehicle trafficability. Traditionally, anti-roll bar, a mechanically interconnected suspension system, connecting left and right suspension, decouples roll mode from the bounce mode and results in a stiff roll mode and a soft bounce mode, which is desired. However, anti-roll bars fail to connect the front wheel motions with the rear wheels', thus the wheels' motions in the warp mode are affected by anti-roll bars and it results an undesired stiffened warp mode. A stiffened warp mode limits the wheel-ground contact and may cause one wheel lift up especially during off-road drive. In contrast with anti-roll bars, two types of hydraulic suspensions which interconnect four wheels (for two-axis vehicles) can further decouple articulation mode from other modes.
Technical Paper

Modeling and Model Analysis of a Full-Car Fitted with an Anti-Pitch Anti-Roll Hydraulically Interconnected Suspension

2014-04-01
2014-01-0849
In this paper, a passive anti-pitch anti-roll hydraulically interconnected suspension is proposed for compromising the control between the pitch and roll mode of the sprung mass. It has the advantage in improving the directional stability and handling quality of vehicles during steering and braking manoeuvres. Frequency domain analysis of a 7-DOF full-car model with the proposed system is presented. The modeling of mechanical subsystem is established based on the Newton's second law. Then the mechanical-hydraulic system boundary conditions are developed by incorporating the hydraulic strut forces into the mechanical subsystem as externally applied forces. The hydraulic subsystem is modelled by using the impedance method, and each circuit are determined by the transfer matrix method. And then the modal analysis method is employed to perform the vibration analysis between the vehicle with the conventional suspension and the proposed HIS.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Journal Article

Handling Analysis of a Vehicle Fitted with Roll-Plane Hydraulically Interconnected Suspension Using Motion-Mode Energy Method

2014-04-01
2014-01-0110
This paper employs the motion-mode energy method (MEM) to investigate the effects of a roll-plane hydraulically interconnected suspension (HIS) system on vehicle body-wheel motion-mode energy distribution. A roll-plane HIS system can directly provide stiffness and damping to vehicle roll motion-mode, in addition to spring and shock absorbers in each wheel station. A four degree-of-freedom (DOF) roll-plane half-car model is employed for this study, which contains four body-wheel motion-modes, including body bounce mode, body roll mode, wheel bounce mode and wheel roll mode. For a half-car model, its dynamic energy contained in the relative motions between its body and wheels is a sum of the energy of these four motion-modes. Numerical examples and full-car experiments are used to illustrate the concept of the effects of HIS on motion-mode energy distribution.
Technical Paper

Robust Braking/Driving Force Distribution and Active Front Steering Control of Vehicle System with Uncertainty

2011-09-13
2011-01-2145
Uncertainties present a large concern in actual vehicle motion and have a large effect on vehicle system control. We attempt a new robust control design approach for braking/driving force distribution and active front steering of vehicle system with uncertain parameters. The braking/driving force distribution control is equivalently studied as the integral direct yaw moment control. Then the control design is carried out by using a state-space vehicle model with embedded fuzzy uncertainties. By taking the compensated front wheel steering angle and the direct yaw moment as the control inputs, a feedback control that aims to compensate the system uncertainty is proposed. In a quite different angle, we employ fuzzy descriptions of the uncertain parameters. The controlled system performance is deterministic, and the control is not if-then rules-based. Fuzzy descriptions of the uncertain parameters are used to find an optimal control gain.
Journal Article

New Attempts on Vehicle Suspension Systems Modeling and Its Application on Dynamical Load Analysis

2011-09-13
2011-01-2171
Suspension system dynamics can be obtained by various methods and vehicle design has gained great advantages over the dynamics analysis. By employing the new Udwadia-Kalaba equation, we endeavor some attempts on its application to dynamic modeling of vehicle suspension systems. The modeling approach first segments the suspension system into several component subsystems with kinematic constraints at the segment points released. The equations of motion of the unconstrained subsystems are thus easily obtained. Then by applying the second order constraints, the suspension system dynamics is then obtained. The equations are of closed-form. Having the equations obtained, we then show its application on dynamical load analysis. The solutions for the dynamical loads at interested hard points are obtained. We use the double wishbone suspension to show the systematic approach is easy handling.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
X