Refine Your Search

Topic

Author

Search Results

Technical Paper

AI-based EV Range Prediction with Personalization in the Vast Vehicle Data

2024-04-09
2024-01-2868
It is an important factor in electric vehicles to show customers how much they can drive with the energy of the remaining battery. If the remaining mileage is not accurate, electric vehicle drivers will have no choice but have to feel anxious about the mileage. Additionally, the potential customers have range anxiety when they consider Electric Vehicles. If the remaining mileage to drive is wrong, drivers may not be able to get to the charging station and may not be able to drive because the battery runs out. It is important to show the remaining available driving range exactly for drivers. The previous study proposed an advanced model by predicting the remaining mileage based on actual driving data and based on reflecting the pattern of customers who drive regularly. The Bayesian linear regression model was right model in previous study.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

Maximizing FCEV Stack Cooling Performance: Developing a Performance Prediction Model Based on Machine Learning for Evaporative Cooling Radiator

2024-04-09
2024-01-2586
Recently, regulations on automobile emission have been significantly strengthened to address climate change. The automobile industry is responding to these regulations by developing electric vehicles that use batteries and fuel-cells. Automobile emissions are environmentally harmful, especially in the case of vehicles equipped with high-temperature and high-pressure diesel engines using compression-ignition, the proportion of nitrogen oxides (NOx) emissions reaches as high as 85%. Additionally, air pollution caused by particulate matter (PM) is six to ten times higher compared to gasoline engines. Therefore, the electrification of commercial vehicles using diesel engines could potentially yield even greater environmental benefits. For commercial vehicles battery electric vehicles (BEVs) require a large number of batteries to secure a long driving range, which reduces their maximum payload capacity.
Technical Paper

A Preliminary Study on the Evaporative Cooling System for FCEV

2024-04-09
2024-01-2406
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation.
Technical Paper

Thermal Characterization of Lithium-Ion Batteries under Varying Operating Conditions

2024-04-09
2024-01-2667
Despite the widespread adoption of lithium-ion batteries in various applications such as energy storage, concerns related to thermal management have been persisting, primarily due to the heat generated during their operation and the associated adverse effects on its efficiency, safety, and lifetime. Hence, the thermal characterization of lithium-ion batteries is essential for optimizing the layout of the battery cells for a pack design and the corresponding thermal management system. This study focuses on an experimental investigation of heat generation of Li-ion batteries under different operating conditions, including charge-discharge rates, ambient temperatures, states of charge, and compressive pressure. The experiments were conducted using a custom-designed multifunctional calorimeter, enabling precise measurement of the heat generation rate of the battery and the entropy coefficient. The measured results have shown a good match with the calculated heat generation rate.
Technical Paper

Engine Crank Stop Position Control to Reduce Starting Vibration of a Parallel Hybrid Vehicle

2024-04-09
2024-01-2784
Engine off control is conducted on parallel hybrid vehicles in order to reduce fuel consumption. It is efficient in terms of fuel economy, however, noise and vibration is generated on engine cranking and transferred through engine mount on every mode transition from EV to HEV. Engine crank position control has been studied in this paper in order to reduce vibration generated when next cranking starts. System modeling of an architecture composed of an engine, P1 and P2 motors has been conducted. According to the prior studies, there exists correlation between crank vibration level and the crank angle. Thus a method to locate pistons on a specific crank angle which results in a local minimum of vibration magnitude could be considered. The P1 motor facilitates this crank position control when engine turns off, for its location directly mounted on a crankshaft allows the system model to obtain more precise crank position estimation and improved linearity in torque control as well.
Technical Paper

An Experimental Study on Camshaft Impact Noise by Dynamic Coupling of Valve Train and Chain System

2024-04-09
2024-01-2827
To improve the fuel efficiency and satisfy the strict emission regulations, the development of internal combustion engine gets more complicated in both hardware and software perspectives, and the margins for durability and NVH quality become narrower, which could result in poor NVH robustness in harsh engine operating conditions. In this paper, we investigate experimentally the camshaft impact noise mechanism relating the valve train and timing chain forces to detailed motion of the camshaft and the chain tensioner. After the initial investigation of identifying the impact timings and specific engine operating points when the noise occurs, the camshaft orbital motion inside of the sliding bearing is measured and visualized with the proximity sensors with calibration after sensor mounting, in addition to the chain tensioner movements.
Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

Diagnosis and Prognosis of Chassis Systems in Autonomous Driving Conditions

2023-04-11
2023-01-0741
Expanding various future mobilities such as purpose built vehicle (PBV), urban air mobility (UAM), and robo-taxi, the application of autonomous driving system (ADS) technology is also spreading. The main point of ADS is to ensure safety by monitoring vehicle anomalies to prevent functional failure or accident. In this study, a model-based diagnosis and prognosis process was established using degradation data generated during autonomous driving simulation. A vehicle model was designed using Modelica/Dymola, and autonomous driving simulation was performed by integrating the lane keeping assistant (LKA) system with the vehicle model using Matlab/Simulink. Degradation data for the 3 components (a shock absorber damper, a suspension bush, and a tire) of the chassis system were input into the integrated simulation model. The degradation behavior was monitored with K-nearest neighbor (K-NN) and Gaussian mixture model (GMM).
Technical Paper

Development of Truck Platooning System Including Emergency Braking Function with Vehicle-in-the-Loop (VIL) Testing

2023-04-11
2023-01-0571
Platoon is a system that connects vehicles through vehicle-to-vehicle (V2V) communication technology to maintain a short distance between vehicles while driving on the road. To improve fuel efficiency, many automotive original equipment manufacturers (OEMs) are interested in developing and demonstrating real-world platoon system. However, it is hard for heavy duty trucks to develop this system due to the difficulty of maintaining the targeted intervehicle distance not only for fuel efficiency but also for safety in case of emergency braking. Because of this critical safety issue in the emergency situation, the platoon system for heavy duty trucks can be hardly demonstrated or tested in real vehicle environment. The relatively complex system and the slow response characteristic of commercial vehicles makes this even more difficult.
Technical Paper

Enhancing Meta Model of the Brake Pad Friction Coefficient Using the Explainable Machine Learning

2022-09-19
2022-01-1175
Recently, increasing system complexity and various customer demands result in the need for highly efficient vehicle development processes. Once the brake torque is predicted accurately during the driving scenario in the earlier stage, it will be able to prevent the changing the vehicle or brake system design to satisfy the legal regulation and customer requirement. As brake torque performance target allocate brake pad friction coefficient level and characteristic, the accurate friction coefficient prediction should be preceded for accurate prediction for brake torque. Generally, the friction coefficient of the brake pad is known to vary nonlinearly depending on the physical properties of the disc and the pad, as well as the brake disc rotational speed, the disc temperature, and the hydraulic pressure. Furthermore, it varies depending on the driving scenario even when other conditions are the same. Therefore, it is necessary to apply new methods to solve these challenges.
Technical Paper

Using Analytical Techniques to Understand the Impacts Intelligent Thermal Management Has on Piston NVH

2022-06-15
2022-01-0930
In order to align with net-zero CO2 ambitions, automotive OEMs have been developing increasingly sophisticated strategies to minimise the impact that combustion engines have on the environment. Intelligent thermal management systems to actively control coolant flow around the engine have a positive impact on friction generated in the power cylinder by improving the warmup rate of cylinder liners and heads. This increase in temperature results in an improved frictional performance and cycle averaged fuel consumption, but also increases the piston to liner clearances due to rapid warm up of the upper part of the cylinder head. These increased clearances can introduce piston slap noise and substantially degrade the NVH quality to unacceptable levels, particularly during warmup after soak at low ambient temperatures. Using analytical techniques, it is possible to model the thermo-structural and NVH response of the power cylinder with different warm up strategies.
Technical Paper

Eco-Vehicle Battery System Big-Data Analysis and Fault Mode and Fault Tree Analysis (FTA) Related Robust System Development

2020-04-14
2020-01-0447
High-voltage battery system plays a critical role in eco-friendly vehicles due to its effect on the cost and the electric driving range of eco-friendly vehicles. In order to secure the customer pool and the competitiveness of eco-vehicle technology, vehicle electrification requires lowering the battery cost and satisfying the customer needs when driving the vehicles in the real roads, for example, maximizing powers for fun drive, increasing battery capacities for achieving appropriate trip distances, etc. Because these vehicle specifications have a critical effect on the high-voltage battery specification, the key technology of the vehicle electrification is the appropriate decision on the specification of the high-voltage battery system, such as battery capacity and power. These factors affect the size of battery system and vehicle under floor design and also the profitability of the eco-friendly vehicles.
Technical Paper

Development of Ultra-Stable Cu-SCR Aftertreatment System for Advanced Lean NOx Control

2019-04-02
2019-01-0743
The integration of SCR catalyst into diesel-particulate filter (SDPF) may be one of most viable ways to meet upcoming stringent emission regulations with new test protocols such as Worldwide harmonized Light vehicles Test Cycles (WLTC) and Real Driving Emissions (RDE) requirements. The chabazite-structured SSZ-13-based catalysts enabled the wide implementation of urea-SCR technology for mobile applications due to their robust thermal stability up to 750°C compared to the thermally unstable ZSM-5-based technologies. However, the thermally stable Cu-SSZ-13 catalyst starts losing its initial activity with the increase of aging time at 850°C, where the SCR catalyst on SDPF can possibly be exposed during filter regeneration under a drop-to-idle (DTI) condition. Therefore, more durable SCR catalysts that survive under higher temperatures have been strongly desired in automotive industry. Recently, we found Cu-exchanged high silica LTA revealed an excellent hydrothermal stability.
Technical Paper

The Development of a NOx Reduction System during the Fuel Cut Period for Gasoline Vehicles

2019-04-02
2019-01-1292
Generally, vehicles do not need power during deceleration. Therefore, the fuel efficiency can be improved by stopping the fuel injection in this period. However, when the fuel cut is activated, NOx is emitted immediately after fuel cut. During the fuel cut period, a large amount of fresh air flows into the catalytic converter installed on a vehicle since there is no combustion. Thus, the catalytic materials are converted into an oxidizing atmosphere. As a result, NOx purification performance of the catalyst deteriorates, and eventually NOx is emitted when combustion restarts. The quantity of NOx in this period is relatively small. However, in case of increasing fuel cuts, emission problem could arise. Therefore, in order to meet the stringent regulation such as LEV III-SULEV20 or 30, the number of fuel cuts need to be limited. The problem is that this strategy leads to a disadvantage of fuel efficiency.
Technical Paper

Effects of Bore-to-Stroke Ratio on the Efficiency and Knock Characteristics in a Single-Cylinder GDI Engine

2019-04-02
2019-01-1138
As a result of stringent global regulations on fuel economy and CO2 emissions, the development of high-efficiency SI engines is more urgent now than ever before. Along with advanced techniques in friction reduction, many researchers endeavor to decrease the B/S (bore-to-stroke) ratio from 1.0 (square) to a certain value, which is expected to reduce the heat loss and enhance the burning rate of SI engines. In this study, the effects of B/S ratios were investigated in aspects of efficiency and knock characteristics using a single-cylinder LIVC (late intake valve closing) GDI (gasoline direct injection) engine. Three B/S ratios (0.68, 0.83 and 1.00) were tested under the same mechanical compression ratio of 12:1 and the same displacement volume of 0.5 L. The head tumble ratio was maintained at the same level to solely investigate the effects of geometrical changes caused by variations in the B/S ratio.
Technical Paper

Development of Surfactant-Free Anti-Fogging Coating for Automotive Headlamps

2019-03-25
2019-01-1439
Recently, the design of automotive headlamps has become diversified and complicated according to customer needs. Hence, structural complexity of the headlamps has also increased. Complex structure of the headlamps inevitably causes a disturbance in air circulation. For this reason, inadvertent micro-sized water droplets, called fogging, are condensed on the inner surface of headlamp lens due to temperature difference between the inner and outer lens surfaces. To circumvent fogging inside of the headlamp lens, an anti-fogging coating is indispensable. Conventionally, diverse surfactants have been adopted as substantial material for the anti-fogging coating. However, the usage of the surfactants causes undesirable side effect such as water mark arising from vapor condensation, which is an important issue that must be fully resolved. In this study, we developed an innovative anti-fogging coating material without using conventional surfactant.
Technical Paper

A Study of the Half Order Modulation Control for Diesel Combustion Noise by Using Model Based Controller Design

2019-03-25
2019-01-1416
This model based investigation is carried out in order to control the half order modulation for diesel engines using by virtual calibration approach and proposes a feedback control strategy to mitigate cylinder to cylinder imbalance from asymmetric cylinders torque production. Combustion heat release analysis is performed on test data to understand the root cause of observed cylinder to cylinder pressure variations. The injected fuel variations are shown to cause the observed pressure variations between cylinders. A feedback control strategy based on measured crank shaft position is devised to control the half order modulation to balance the combustion pressure profile between cylinders. This control strategy is implemented in Simulink and is tested in closed-loop with the diesel engine model in AMESim. The closed-loop performance indicates that the half order modulation is considerably improved while having minimal impact on the fuel consumption.
Technical Paper

Smart Engine Control Strategy for the Fuel Efficiency Improvement via Understanding the Unique Behavior of TWC

2019-03-25
2019-01-1406
The worldwide fuel economy compliance level has been tightening, at the same time, LEV-III/Euro-6d/China-6/BS-6 regulations for NMOG and NOx emissions are being introduced or already effective. Therefore, intensive research effort has been conducted in order to improve the fuel efficiency of passenger cars and reduce exhaust emission. In response to these demands, turbocharged gasoline direct injection (TGDI) engine is being introduced for gasoline vehicles in consideration of fuel efficiency improvement, high output and driving performance compared to naturally aspirated (NA) engine. However, due to its larger thermal mass from the turbo hardware in the exhaust, it suffers from the cold-start emission. The main hazardous gases emitted from gasoline vehicles are CO, HC and NOx, and a three-way catalyst (TWC) is installed for the purification of these harmful emissions.
X