Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

AI-Based Optimization Method of Motor Design Parameters for Enhanced NVH Performance in Electric Vehicles

2024-06-12
2024-01-2927
The high-frequency whining noise produced by motors in modern electric vehicles causes a significant issue, leading to annoyance among passengers. This noise becomes even more noticeable due to the quiet nature of electric vehicles, which lack other noises to mask the high-frequency whining noise. To improve the noise caused by motors, it is essential to optimize various motor design parameters. However, this task requires expert knowledge and a considerable time investment. In this study, we explored the application of artificial intelligence to optimize the NVH performance of motors during the design phase. Firstly, we selected and modeled three benchmark motor types using Motor-CAD. Machine learning models were trained using Design of Experiment methods to simulate batch runs of Motor-CAD inputs and outputs.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Active Vibration Control of Road Noise Path Using Piezoelectric Stack Actuators and Filtered-X LMS Algorithm for Electric Vehicle Applications

2024-06-12
2024-01-2953
This paper presents the novel active vibration control (AVC) system that controls vehicle body vibration to reduce the structural borne road noise. As a result of vehicle noise testing in an electric vehicle, the predominant frequency of vehicle body vibration that worsens interior noise is in the range of 150-250Hz. Such vibration in that frequency range, commonly masked in engine vibrations, are hard to neglect for electric vehicles. The vibration source of that frequency is the resonance of tire cavity mode. Resonator or absorption material has been applied inside the tire for the control of cavity noise as a passive method. They require an increment of weight and cost. Therefore, a novel method is necessary. The vibration amplified by resonance of cavity mode is transferred to the vehicle body throughout the suspension system. To reduce the vibration, AVC system is applied to the suspension mount.
Technical Paper

AI-based EV Range Prediction with Personalization in the Vast Vehicle Data

2024-04-09
2024-01-2868
It is an important factor in electric vehicles to show customers how much they can drive with the energy of the remaining battery. If the remaining mileage is not accurate, electric vehicle drivers will have no choice but have to feel anxious about the mileage. Additionally, the potential customers have range anxiety when they consider Electric Vehicles. If the remaining mileage to drive is wrong, drivers may not be able to get to the charging station and may not be able to drive because the battery runs out. It is important to show the remaining available driving range exactly for drivers. The previous study proposed an advanced model by predicting the remaining mileage based on actual driving data and based on reflecting the pattern of customers who drive regularly. The Bayesian linear regression model was right model in previous study.
Technical Paper

A study on estimation of stuck probability in off-road based on AI

2024-04-09
2024-01-2866
After the COVID-19 pandemic, leisure activities and cultures have undergone significant transformations. Particularly, there has been an increased demand for outdoor camping. Consequently, the need for capabilities that allow vehicles to navigate not only paved roads but also unpaved and rugged terrains has arisen. In this study, we aim to address this demand by utilizing AI to introduce a 'Stuck Probability Estimation Algorithm' for vehicles on off-road. To estimate the 'Stuck Probability' of a vehicle, a mathematical model representing vehicle behavior is essential. The behavior of off-road driving vehicles can be characterized in two main aspects: firstly, the harshness of the terrain (how uneven and rugged it is), and secondly, the extent of wheel slip affecting the vehicle's traction.
Technical Paper

Development of Noise Diagnosis and Prediction Technology for Column-Based Electric Power Steering Systems Using Vehicle Controller Area Network Data

2024-04-09
2024-01-2897
The steering system is a critical component for controlling a vehicle's direction. In the context of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles, where drivers may not always be actively holding the steering wheel, early detection of precursor noise signals is essential to prevent serious accidents resulting from the loss of steering system functionality. It is therefore imperative to develop a device capable of early detection and notification of steering system malfunctions. Therefore, the current study aimed to quantify the noise levels generated within the Column-based Electric Power Steering (C-EPS) system of a D-segment sedan. To this end, we measured the uniaxial acceleration in nine noise-generating areas while simultaneously collecting data from three Controller Area Network (CAN) sources that are directly related to steering operation.
Technical Paper

A Study on Optimization Development of Cooling Fan Motor for EMC

2024-04-09
2024-01-1988
With the trend of electrification and connectivity, more electrified parts and more integrated chips are being applied. Consequently, potential problems based on electro-magnetic could occur more easily, and interest on EMC performance has been rising according to the degree of electrification. In this paper, one of the most severe systems, cooling fan motor in terms of EMI, is analyzed and improvement methods are suggested for each type of cooling fan. Additionally, an optimized configuration of improvement method for EMC has been derived through analysis and study. Finally, verification and validation are implemented at the system and vehicle levels.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

A Study on the Development of Concept Models Using Higher-Order Beams

2024-04-09
2024-01-2227
In the early stages of vehicle development, it is critical to establish performance goals for the major systems. The fundamental modes of body and chassis frames are typically assessed using FE models that are discretized using shell elements. However, the use of the shell-based FE method is problematic in terms of fast analysis and quick decision-making, especially during the concept phase of a vehicle design because it takes much time and effort for detailed modeling. To overcome this weakness, a one-dimensional (1D) method based on beam elements has been extensively studied over several decades, but it was not successful because of low accuracy for thin-walled beam structures. This investigation proposes a 1D method based on thin-walled beam theory with comparable accuracy to shell models. Most body pillars and chassis frame members are composed of thin-walled beam structures because of the high stiffness-to-mass ratio of thin-walled cross sections.
Technical Paper

Maximizing FCEV Stack Cooling Performance: Developing a Performance Prediction Model Based on Machine Learning for Evaporative Cooling Radiator

2024-04-09
2024-01-2586
Recently, regulations on automobile emission have been significantly strengthened to address climate change. The automobile industry is responding to these regulations by developing electric vehicles that use batteries and fuel-cells. Automobile emissions are environmentally harmful, especially in the case of vehicles equipped with high-temperature and high-pressure diesel engines using compression-ignition, the proportion of nitrogen oxides (NOx) emissions reaches as high as 85%. Additionally, air pollution caused by particulate matter (PM) is six to ten times higher compared to gasoline engines. Therefore, the electrification of commercial vehicles using diesel engines could potentially yield even greater environmental benefits. For commercial vehicles battery electric vehicles (BEVs) require a large number of batteries to secure a long driving range, which reduces their maximum payload capacity.
Technical Paper

A Preliminary Study on the Evaporative Cooling System for FCEV

2024-04-09
2024-01-2406
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation.
Technical Paper

A Study on Reliability-Based Maximum Service Temperature Estimation of Plastic Automotive Parts

2024-04-09
2024-01-2421
Recently, the environmental temperature of vehicles is changing due to the electrification of vehicles and improved internal combustion engine system to reduce carbon emissions. However, mechanical properties of plastic materials change very sensitively to environmental temperature changes, and mechanical properties decrease when exposed to high temperatures. Therefore, it is important to estimate lifespan estimation of plastic parts according to temperature changes. In this paper, reliability analysis process to estimate the maximum service temperature of plastic parts was developed using aging data of material properties, environmental condition data of automotive parts, and field driving condition data. Changes in the mechanical properties of plastic materials such as glass fiber reinforced polyamide materials were tested. The environmental exposure temperature of the vehicle and parts was measured, and the general driving pattern of the vehicle was analyzed.
Technical Paper

Engine Crank Stop Position Control to Reduce Starting Vibration of a Parallel Hybrid Vehicle

2024-04-09
2024-01-2784
Engine off control is conducted on parallel hybrid vehicles in order to reduce fuel consumption. It is efficient in terms of fuel economy, however, noise and vibration is generated on engine cranking and transferred through engine mount on every mode transition from EV to HEV. Engine crank position control has been studied in this paper in order to reduce vibration generated when next cranking starts. System modeling of an architecture composed of an engine, P1 and P2 motors has been conducted. According to the prior studies, there exists correlation between crank vibration level and the crank angle. Thus a method to locate pistons on a specific crank angle which results in a local minimum of vibration magnitude could be considered. The P1 motor facilitates this crank position control when engine turns off, for its location directly mounted on a crankshaft allows the system model to obtain more precise crank position estimation and improved linearity in torque control as well.
Technical Paper

A Study on the Development of Architecture Virtual Driving Performance using Concept Model

2024-04-09
2024-01-2723
An architecture virtual driving performance development process and strategy were established using the concept model. Driving performance concept models for each level and performance, that can be utilized in the architecture stage, were developed. Advanced concept models such as smart driver and comfort models were developed for reliable emergency handling and comfort performance prediction. System characteristic DB(DataBase) structure was designed and formed to utilize the concept model for major vehicle platforms and models. System characteristics can be configured by automatically extracting system characteristics from ADAMS model or SPMD(Suspension Parameters Measuring Device) DB. In addition, when the concept model is completed by updating the weight, specifications and tire characteristic of the new vehicle platform, handling and ride comfort performance can be analyzed.
Technical Paper

An Experimental Study on Camshaft Impact Noise by Dynamic Coupling of Valve Train and Chain System

2024-04-09
2024-01-2827
To improve the fuel efficiency and satisfy the strict emission regulations, the development of internal combustion engine gets more complicated in both hardware and software perspectives, and the margins for durability and NVH quality become narrower, which could result in poor NVH robustness in harsh engine operating conditions. In this paper, we investigate experimentally the camshaft impact noise mechanism relating the valve train and timing chain forces to detailed motion of the camshaft and the chain tensioner. After the initial investigation of identifying the impact timings and specific engine operating points when the noise occurs, the camshaft orbital motion inside of the sliding bearing is measured and visualized with the proximity sensors with calibration after sensor mounting, in addition to the chain tensioner movements.
Technical Paper

Development of Ammonia Direct Injection 4-Cylinder Spark-Ignition Engine

2024-04-09
2024-01-2818
As the carbon neutrality to reduce greenhouse gas emissions has become a global movement, the development of power sources using carbon-free fuels is an essential task for the industry. Accordingly, many companies in various fields that need carbon reduction are striving to develop power sources and build energy value chains using carbon-free or carbon-neutral fuels such as hydrogen and E-fuel. Ammonia, which is also a carbon-free fuel, stands as an efficient energy vector delivering high energy density and flexibility in transportation and storage, capable of mitigating hydrogen’s key drawbacks. However, difficulty of controlling combustion of ammonia due to its fuel characteristics limited the development of internal combustion engines using ammonia to the basic research stage in the limited operating conditions. Hyundai Motor Company presents the development of ammonia fueled 4-cylinder SI engine using direct injection strategy, designed based on 2.5L LPG T-DI engine.
Technical Paper

Analysis of Aerodynamic Characteristics of Fan-Type Wheels

2024-04-09
2024-01-2540
This research addresses the pressing need for reducing vehicle aerodynamic resistance, with a specific focus on mitigating wheel and tire resistance, which constitutes approximately 25% of the overall vehicle drag. While the prevailing method for reducing resistance in mass production development involves wheel opening reduction, it inadvertently increases wheel weight and has adverse effects on brake cooling performance. To overcome these challenges, novel complementary resistance reduction methods that can be employed in conjunction with an appropriate degree of wheel opening reduction are imperative. In this study, we introduce symmetrical wheels with a fan-like shape as a solution. The fan configuration influences the surrounding flow by either drawing it in or pushing it out, depending on the direction of rotation. Application of these fan-type wheels to a vehicle's wheels results in the redirection of flow inwards or outwards during high-speed driving due to wheel rotation.
Technical Paper

Comprehensive assessment of gasoline spray robustness for different plume arrangements

2024-04-09
2024-01-2620
Optimizing fuel injection spray is essential to comply with stringent future emission regulations for hybrid vehicles and internal combustion engine vehicles, and the spray characteristics and geometry must be robust for various engine operating conditions. This study presents experimental and numerical assessments of spray for lateral-mounted gasoline direct injection (GDI) sprays with different plume arrangements to analyze collapse characteristics, which can significantly deteriorate the geometry and characteristics of fuel sprays. Novel spray characterization methods are applied to analyze complex spray collapse behaviors using LED-based diffusive back-illuminated extinction imaging (DBIEI) and 3D computed tomographic (CT) image reconstruction. High-fidelity computational fluid dynamics (CFD) simulations are performed to analyze the detailed spray characteristics besides experimental characterization.
Technical Paper

Development of Rumble Noise Analysis Method for Electric Powertrain

2023-04-11
2023-01-0459
In electric-powertrains, noise and vibration can be generated by components such as gears and motors. Often a noise phenomenon known as rumble or droning noise can occur due to low shaft order excitation at the spline. In this study, we identified the excitation source for spline induced rumble noise and developed a novel analysis method. First, a detailed spline model, believed to be the key factor for rumble noise, has been developed and verified by comparison with Finite Element Method(FEM) analysis. In order to identify an excitation source, a typical electric-powertrain assembly model including the developed spline model was constructed and simulated. Results according to changes of key factors including spline pitch errors and shaft alignment errors were analyzed. Spline radial force has been identified as an excitation source of spline induced rumble noise. This was verified through comparison with the forced vibration analysis result and time domain analysis result.
Technical Paper

Full Aluminum Body Design Considering Part-Specific Requirements

2023-04-11
2023-01-0603
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%.
X