Refine Your Search

Topic

Author

Search Results

Technical Paper

Cool System, Lasting Power - an Outstanding E-Powertrain Meets MX Dirt Track

2024-04-09
2024-01-2165
The powertrain electrification is currently not only taking place in public road mobility vehicles, but is also making its way to the racetrack, where it’s driving innovation for developments that will later be used in series production vehicles. The current development focus for electric vehicles is the balance between driving power, range and weight, which is given even greater weighting in racing. To redefine the current limits, IAV developed a complete e-powertrain for a racing MX motorcycle and integrated it into a real drivable demonstrator bike. The unique selling point is the innovative direct phase-change cooling (PCC) of the three-phase e-motor and its power electronics, which enables significantly increased continuous power (Pe = 40 kW from 7,000 rpm to 9,000 rpm) without thermal power reduction. The drive unit is powered by a replaceable Lithium-Ion round cell battery (Ubat,max = 370V) with an energy storage capacity of Ebat = 5 kWh.
Journal Article

Future HD Diesel and Hydrogen-Fueled Concepts: Emissions Challenges and System Solutions

2022-08-30
2022-01-1011
Future heavy-duty (HD) concepts should fulfill very tight tail-pipe NOx emissions and simultaneously fulfill the fuel efficiency targets. In current HD Euro VII discussions, real working cycles become key to ensure emission conformity. For instance, cold start and cold ambient conditions during testing with low load profiles starting from 0% payload, require external heating measures. Knowing the trade-off between fuel consumption and tail-pipe NOx emissions a holistic engine and EAT system optimization with innovative thermal management is required. Towards a carbon neutral mobility, Hydrogen combustion engines are one of the key solutions. Advanced combustion system development enables maximal usage of lean burning as the major advantage of the Hydrogen fuel for efficiency improvement and NOx reduction.
Journal Article

Low-Temperature NOx Reduction by H2 in Diesel Engine Exhaust

2022-03-29
2022-01-0538
For the NOx removal from diesel exhaust, the selective catalytic reduction (SCR) and lean NOx traps are established technologies. However, these procedures lack efficiency below 200 °C, which is of importance for city driving and cold start phases. Thus, the present paper deals with the development of a novel low-temperature deNOx strategy implying the catalytic NOx reduction by hydrogen. For the investigations, a highly active H2-deNOx catalyst, originally engineered for lean H2 combustion engines, was employed. This Pt-based catalyst reached peak NOx conversion of 95 % in synthetic diesel exhaust with N2 selectivities up to 80 %. Additionally, driving cycle tests on a diesel engine test bench were also performed to evaluate the H2-deNOx performance under practical conditions. For this purpose, a diesel oxidation catalyst, a diesel particulate filter and a H2 injection nozzle with mixing unit were placed upstream to the full size H2-deNOx catalyst.
Technical Paper

High Efficiency HD Hydrogen Combustion Engines: Improvement Potentials for Future Regulations

2022-03-29
2022-01-0477
Hydrogen engines offer the possibility of a carbon neutral transportation - a focal point of current propulsion development activities especially for EU and US future concepts. From today's point of view, hydrogen can play an important role in this regard as it is a carbon-free fuel, no CO2 emissions are produced during its combustion process. Besides, it can be well used for lean burn combustion leading to very low NOx emissions, a key benefit in combination with an optimized after-treatment system for future ultra-low NOx legislations of heavy-duty (HD) engines. Comprehensive investigations using experimental tests and model-based development approach are performed using a six cylinder HD hydrogen engine featuring PFI (port fuel injection) aiming the definition of a high efficiency hydrogen engine concept.
Technical Paper

EGR Cooler Fouling Reduction: A New Method for Assessment in Early Engine Development Phase

2022-03-29
2022-01-0589
High pressure EGR provides NOx emission reduction even at low exhaust temperatures. To maintain a safe EGR system operation over a required lifetime, the EGR cooler fouling must not exceed an allowable level, even if the engine is operated under worst-case conditions. A reliable fouling simulation model represents a valuable tool in the engine development process, which validates operating and calibration strategies regarding fouling tendency, helping to avoid fouling issues in a late development phase close to series production. Long-chained hydrocarbons in the exhaust gas essentially impact the fouling layer formation. Therefore, a simulation model requires reliable input data especially regarding mass flow of long-chained hydrocarbons transported into the cooler. There is a huge number of different hydrocarbon species in the exhaust gas, but their individual concentration typically is very low, close to the detection limit of standard in-situ measurement equipment like GC-MS.
Technical Paper

Gane Fuel - Introduction of an Innovative, Carbon-Neutral and Low Emission Fuel for HD CI Engines

2021-09-21
2021-01-1198
The newest legislative trends enforce a significant decrease in CO2 emissions for commercial vehicles. For instance, in Europe a drop in fleet consumption of 15% and 30% is set as target by the regulation by 2025 and 2030. The use of carbon-neutral fuels offers possibilities regarding net-zero CO2 emissions - although not yet considered by the rules. Another challenging aspect is the drastic tightening of NOx emissions limits for future legislations, which is approved or being discussed both for the United States and for the EU. The current work describes the potentials of an innovative fuel, marketed as Gane fuel regarding performance, efficiency and emission behavior. First, the properties of the developed fuel are described: Gane is made from methanol blended with water and is tailored for diffusive combustion. The fuel blending is so defined to fulfill the combustion requirements.
Journal Article

Euro VII and Beyond with Hydrogen Combustion for Commercial Vehicle Applications: From Concept to Series Development

2021-09-21
2021-01-1196
One challenge for the development of commercial vehicles is the reduction of CO2 greenhouse, where hydrogen can help to reduce the fleet CO2. For instance, in Europe a drop in fleet consumption of 15% and 30% is set as target by the regulation until 2025 and 2030. Another challenge is EURO VII in EU or even already approved CARB HD Low NOx Regulation in USA, not only for Diesel but also for hydrogen combustion engines. In this study, first the requirements for the combustion and after-treatment system of a hydrogen engine are defined based on future emission regulations. The major advantages regarded to hydrogen combustion are due to the wide range of flammability and very high flame speed numbers compared to other fossil based fuels. Thus, it can be well used for lean burn combustion with much better fuel efficiency and very low NOx emissions with an ultra lean combustion. A comprehensive experimental investigation is performed on a HD 2 L single-cylinder engine.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Hybrid Physical and Machine Learning-Oriented Modeling Approach to Predict Emissions in a Diesel Compression Ignition Engine

2021-04-06
2021-01-0496
The development and calibration of modern combustion engines is challenging in the area of continuously tightening emission limits and the necessity for meeting real driving emissions regulations. A focus is on the knowledge of the internal engine processes and the determination of pollutants formations in order to predict the engine emissions. A physical model-based development provides an insight into hardly measurable phenomena properties and is robust against changing input data. With increasing modeling depth the required computing capacities increase. As an alternative to physical modeling, data-driven machine learning methods can be used to enable high-performance modeling accuracy. However, these are dependent on the learned data. To combine the performance and robustness of both types of modeling a hybrid application of data-driven and physical models is developed in this paper as a grey box model for the exhaust emission prediction of a commercial vehicle diesel engine.
Technical Paper

Numerical and Experimental Investigations of Hydrogen Combustion for Heavy-Duty Applications

2021-04-06
2021-01-0522
Reduction of the CO2 greenhouse gas emissions is one major challenge the automotive industry as a part of the transportation sector is facing. Hydrogen is regarded as one of the key energy solutions for CO2 reduction in the future transportation sector. First, a hydrogen-powered single-cylinder test rig for 2 liter heavy-duty engine will be introduced. Followed by a discussion of experimental results including variations of engine speed, torque, ignition strategy, air-fuel ratio, etc. In addition, the paper proposes a new phenomenological model for the prediction of hydrogen combustion. The model is based on the well-known two-zone Entrainment approach, supported by newly developed hydrogen-specific submodels for the calculation of the laminar flame speed and auto-ignition in the unburned mass zone. The developed physical-based combustion model is extensively validated based on the experimental single-cylinder results.
Journal Article

Holistic Engine and EAT Development of Low NOX and CO2 Concepts for HD Diesel Engine Applications

2020-09-15
2020-01-2092
The latest legislative tendencies for on-highway heavy duty vehicles in the United States such as the feasibility assessment of low NOX standards of CARB or EPA’s memorandum forecast further tightening of the NOX emissions limits. In addition, the GHG Phase 2 legislation and also phased-in regulations in the EU enforce a continuous reduction in CO2 emissions resp. fuel consumption. In order to meet such low NOX emission limits, a rapid heat-up of the exhaust after-treatment system (EATS) is inevitable. However, the required thermal management results in increased fuel consumption, i.e. CO2 emissions as shown in numerous previous works also by the authors. A NOX-CO2 trade-off for cumulative cycle emissions can be observed, which can be optimized by using more advance technologies on the engine and/or on the EATS side.
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Hybrid Phenomenological and Mathematical-Based Modeling Approach for Diesel Emission Prediction

2020-04-14
2020-01-0660
In order to reduce the negative health effects associated with engine pollutants, environmental problems caused by combustion engine emissions and satisfy the current strict emission standards, it is essential to better understand and simulate the emission formation process. Further development of emission model, improves the accuracy of the model-based optimization approach, which is used as a decisive tool for combustion system development and engine-out emission reduction. The numerical approaches for emission simulation are closely coupled to the combustion model. Using a detailed emission model, considering the 3D mixture preparation simulation including, chemical reactions, demands high computational effort. Phenomenological combustion models, used in 1D approaches for model-based system optimization can deliver heat release rate, while using a two-zone approach can estimate the NOx emissions.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Technical Paper

Modeling Heavy-Duty Engine Thermal Management Technologies to Meet Future Cold Start Requirements

2019-04-02
2019-01-0731
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system. Several different engine technologies are being considered to meet this need. In this study, a 1-D engine model was first used to evaluate several individual control strategies capable of increasing the exhaust enthalpy and decreasing the engine-out NOX over the initial portion of the cold start FTP cycle. The additional fuel consumption resulting from these strategies was also quantified with the model. Next, several of those strategies were combined to create a hypothetical aftertreatment warm-up mode for the engine. The model was then used to evaluate potential benefits of an air gap manifold (AGM) and two different turbine by-pass architectures. The detailed geometry of the AGM model was taken into account, having been constructed from a real prototype design.
Technical Paper

Electrification and Automation of Manual Gearbox Technology to Reduce Fuel Consumption and CO2-Emissions of Passenger Cars

2019-01-09
2019-26-0140
To meet the targets of Indian future emission legislation, an electrification and automation of today’s manual transmission technology is necessary. For this reason, IAV invented an electrified automated transmission family, based on well-known manual transmission technology. This low-cost automated manual transmission (AMT) approach is equipped with a 48 V electric machine and can be used as pure electric or hybrid drivetrain. Furthermore, it is possible to realize power shifts by using just one dry friction element. A small number of standard components combined with a low voltage electric machine and an electromechanical actuation system is sufficient to create a maximum of flexibility to meet future emission fleet targets, without having the disadvantageous high costs for a high-voltage electric system. To detect the optimal powertrain configuration, IAV used a unique advance development tool called Powertrain Synthesis.
Technical Paper

Holistic Evaluation of CO2 Saving Potentials for New Degrees of Freedom in SI Engine Process Control Based on Physical Simulations

2018-09-10
2018-01-1654
Specific shifting of load points is an important approach in order to reduce the fuel consumption of gasoline engines. A potential measure is cylinder deactivation, which is used as a study example. Currently CO2 savings of new concepts are evaluated by dynamic cycles simulations. The fuel consumption during driving cycles is calculated based on consumption-optimized steady-state engine maps. Discrete load point shifts occur as shifts within maps. For reasons of comfort shifts require neutral torque. The work of deactivated cylinders must be compensated by active cylinders within one working cycle. Due to the larger time constant of the air path the air charge must be increased or decreased in order to deactivate or activate cylinders without affecting the torque. A working-cycle-resolved, continuously variable parameter is prerequisite for process control. Manipulation of ignition timing enables a reduction of efficiency and gained work.
Technical Paper

Fundamental Investigations about Heated Fuel Injection on SI Engines

2018-05-30
2018-37-0003
Mixture formation in gasoline direct-injection engines is largely determined by the quality of injection. Injection systems with a wide range of layouts are used today in enhancing spray quality. As parameters, the pressure and temperature of injected fuel play a crucial part in defining quality. The effect increasing pressure has on the quality of spray is basically known. So are ways of applying this process to gasoline fuel. The effect of massively increasing the temperature of injected fuel - to the point of reaching supercritical conditions - in contrast, is not known in any detail. For this reason, the following paper focuses attention on examining the fundamental influence of increasing fuel temperature from 25 °C to 450 °C on the spray behavior of a high-pressure injector with a GDI nozzle. Combining relevant levels of pressure and temperature, discussion also turns to supercritical fuel conditions and their effects on spray behavior.
Technical Paper

Diesel Combustion and Control Using a Novel Ignition Delay Model

2018-04-03
2018-01-1242
The future emission standards, including real driving emissions (RDE) measurements are big challenges for engine and after-treatment development. Also for development of a robust control system, in real driving emissions cycles under varied operating conditions and climate conditions, like low ambient temperature as well as high altitude are advanced physical-based algorithms beneficial in order to realize more precise, robust and efficient control concepts. A fast-running novel physical-based ignition delay model for diesel engine combustion simulation and additionally, for combustion control in the next generation of ECUs is presented and validated in this study. Detailed chemical reactions of the ignition processes are solved by a n-heptane mechanism which is coupled to the thermodynamic simulation of in-cylinder processes during the compression and autoignition phases.
X