Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Improving Emissions, Noise and Fuel Economy Trade-Off by using Multiple Injection Strategies in Diesel Low Temperature Combustion (LTC) Mode

2010-10-25
2010-01-2162
Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture.
Journal Article

Increasing Power Density in HSDI Engines as an Approach for Engine Downsizing

2010-05-05
2010-01-1472
In the context of CO₂ emission regulations and increase of energy prices, the downsizing of engine displacement is a widely discussed solution that allows a reduction of fuel consumption. However, high power density is required in order to maintain the power output and a good driveability. This study demonstrates the potential to strongly increase the specific power of High Speed Diesel Injection (HSDI) diesel engines. It includes the technological requirements to achieve high specific power and the optimal combination of engine settings to maximize specific power. The results are based on experimental work performed with a prototype single-cylinder engine (compression ratio of 14). Tests were conducted at full load, 4000 rpm. Part load requirements are also taken into account in the engine definition to be compatible with the targets of new emission standards.
Journal Article

Optimization of a Euro 5 Vehicle Powered by an Ethanol Based Diesel Fuel

2010-05-05
2010-01-1520
Diversifying energy resources and reducing greenhouse gas emissions are key priorities in the forthcoming years for the automotive industry. Currently, among the different solutions, sustainable biofuels are considered as one of the most attractive answer to these issues. This paper deals with the vehicle application of an innovative diesel fuel formulation using Ethanol to tackle these future challenges. The main goal is to better understand the impact of using biofuel blends on engine behavior, reliability and pollutants emissions. This alternative oxygenated fuel reduces dramatically particulate matter (PM) emissions; this paves the way to improve the NOx/PM/CO₂ trade-off. Another major interest is to avoid adding a particulate filter in the exhaust line and to avoid modifying powertrain and vehicle hardware and therefore to minimize the overall cost to fulfill upcoming emission regulations.
Journal Article

Analysis of Combustion Process in Cold Operation with a Low Compression Ratio Diesel Engine

2010-04-12
2010-01-1267
Future emissions standards for passenger cars require a reduction of NOx (nitrogen oxide) and CO₂ (carbon dioxide) emissions of diesel engines. One of the ways to reach this challenge while keeping other emissions under control (CO: carbon monoxide, HC: unburned hydrocarbons and particulates) is to reduce the volumetric compression ratio (CR). Nevertheless complications appear with this CR reduction, notably during very cold operation: start and idle. These complications justify intensifying the work in this area. Investigations were led on a real 4-cylinder diesel 13.7:1 CR engine, using complementary tools: experimental tests, in-cylinder visualizations and CFD (Computational Fluid Dynamics) calculations. In previous papers, the way the Main combustion takes place according to Pilot combustion behavior was highlighted. This paper, presents an in-depth study of mixture preparation and the subsequent combustion process.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
Journal Article

A 0D Phenomenological Approach to Model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry

2009-04-20
2009-01-0678
More and more stringent restrictions concerning the pollutant emissions of ICE (Internal Combustion Engines) constitute a major challenge for the automotive industry. New combustion strategies such as LTC (Low Temperature Combustion), PCCI (Premixed Controlled Compression Ignition) or HCCI (Homogeneous Charge Compression Ignition) are promising solutions to achieve the imposed emission standards. They permit low NOx and soot emissions via a lean and highly diluted combustion regime, thus assuring low combustion temperatures. In next generation of ICE, new technologies allow the implementation of complex injection strategies in order to optimize the combustion process. This requires the creation of numerical tools adapted to these new challenges. This paper presents a 0D Diesel HCCI combustion model based on a physical 3D CFD (Computational Fluid Dynamics) approach.
Technical Paper

Towards CO and HC Aftertreatment Devices for the Next Generation of Diesel Engines

2008-06-23
2008-01-1543
The reduction of NOx emissions required by the future Euro 6 standards leads engine manufacturers to develop Diesel Homogeneous Charge Compression Ignition (HCCI) combustion processes. Because this concept allows reducing both NOx and particulates simultaneously, it appears as a promising way to meet the next environmental challenges. Unfortunately, HCCI combustion often increases CO and HC emissions. Conventional oxidation catalyst technologies, currently used for Euro 4 vehicles, may not be able to convert these emissions because of the saturation of active catalytic sites. As a result, such increased CO and HC emissions have to be reduced under standard levels using innovative catalysts or emergent technologies. The work reported in this paper has been conducted within the framework of the PAGODE project (PSA, IFP, Chalmers University, APTL, CRF, Johnson Matthey and Supelec) and financed by the European Commission.
Journal Article

Reduction of the Compression Ratio on a HSDI Diesel Engine: Combustion Design Evolution for Compliance the Future Emission Standards

2008-04-14
2008-01-0839
Environment protection issues regarding CO2 emissions as well as customers requirements for fun-to-drive and fuel economy explain the strong increase of Diesel engine on European market share in all passenger car segments. To comply future purposes of emission regulations, particularly dramatic decrease in NOx emissions, technology need to keep upgrading; the reduction of the volumetric compression ratio (VCR) is one of the most promising research ways to allow a simultaneous increase in power at full load and NOx / PM trade-off improvement at part load. This study describes the combustion effects of the reduction of compression ratio and quantifies improvements obtained at full load and part load running conditions on a HSDI Common Rail engine out performance (power, fuel consumption, emissions and noise). Potential and limitations of a reduced compression ratio from 18:1 to 14:1 are underlined.
Technical Paper

Coupling of a NOx Trap and a CDPF for Emission Reduction of a 6-Cylinder HD Engine

2004-06-08
2004-01-1945
To ensure overall optimisation of heavy duty engine performance (with the respect of NOx&PM future European and US emissions standards), the use of a high efficiency NOx after-treatment system such as a NOx trap appears to be necessary. But running in rich conditions, even for a short time, leads to a large increase of particulate emissions so that a particulate filter is required. A first investigation with a NOx-trap only has been carried out to evaluate and optimise the storage, destorage and reduction phases from the NOx conversion efficiency and fuel penalty trade-off. The equivalence ratio level, the fuel penalty and the temperature level of the NOx-trap have been shown as a key parameter. Respective DPF and LNA locations have been studied. The configuration with the NOx-trap upstream provides the best NOx / fuel penalty trade-off since it allows NOx slip reduction and does not disturb the rich pulses.
Technical Paper

Present Day Spark-Ignition Engine Pollutant Emissions: Proposed Model for Refinery Bases Impact

2001-09-24
2001-01-3529
Air quality improvement, especially in urban areas, is one of the major concerns for the coming years. For this reason, car manufacturers, equipment manufacturers and refiners have explored development issues to comply with increasingly severe anti-pollution requirements. In such a context, the identification of the most promising improvement options is essential. A research program, carried out by IFP (Institut Français du Pétrole), and supported by the French Ministry of Industry, IFP, PSA-Peugeot-Citroën, Renault and RVI (Renault Véhicules Industriels), has been built to study this point. It is based on a three years program with different steps focused on new engine technologies which will be available in the next 20 years in order to answer to more and more severe pollutant and CO2 emission regulations. This program is divided into three main parts: the first one for Diesel car engines, the second for Diesel truck engines and the third for spark ignition engines.
Technical Paper

Strategies for the Control of Particulate Trap Regeneration

2000-03-06
2000-01-0472
The reduction of particulate emissions from Diesel engines is a key issue to meet future emission standards. Particulate traps represent an attractive solution to the problem of this source of pollution. However, they have the disadvantage of requiring periodic and safe regeneration to release exhaust back pressure and to recover filtration efficiency. Natural regeneration of the particulate filter may occur. Nevertheless, with light-duty vehicles and their low level of exhaust gas temperature, it may be necessary to facilitate or force the regeneration. The objective of this work is to give an overview of the possibilities offered by the engine management system to increase significantly exhaust gas temperatures. Thus, different engine tunes, through injection timing, boost pressure or EGR rate, may be sufficient to ensure safe regeneration of the trap.
X