Refine Your Search



Search Results

Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
Technical Paper

Impacts of Ethanol Level and Aromatic Hydrocarbon Structure in the Fuel on the Particle Emissions from a Gasoline Direct Injection Vehicle

The recent particle number limits for a spark ignition engine combined with the real driving emissions (RDE) compliance have motivated the need for a better understanding of the effect of the gasoline fuel composition on the particle emissions. More particularly, the fundamental role of high boiling point components and heavy aromatics on particle emissions was highlighted in several literature works. In addition, works driven by the European Renewable Energy Directive are underway in order to explore the feasibility of an increased amount of sustainable Biofuels in Gasoline. Already widely distributed, ethanol is a clear candidate to such an increase. In this context, the present work aims to understand the effect of ethanol addition and aromatics composition on particulate emissions. Vehicle tests were performed over the Worldwide Harmonized Light Vehicles Test Cycle (WLTC) using a Euro 6c model without a Gasoline Particulate Filter (GPF) and a Euro 6d-Temp one equipped with a GPF.
Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Technical Paper

Numerical and Experimental Investigation into Brake Thermal Efficiency Optimum Heat Release Rate for a Diesel Engine

According to thermodynamic analysis of ideal engine cycles, Otto cycle thermal efficiency exceeds that of the Diesel and Sabathe (or Dual) cycles. However, zero-dimensional calculations indicated that the brake thermal efficiency (BTE) of an actual Otto or Diesel engine could be higher with a Sabathe (or Seilliger) type cycle, within a limited peak firing pressure (PFP). To confirm these results with an actual engine, a three-injector combustion system (center and two sides) was utilized to allow more flexibility in the heat release rate (HRR) profile than the conventional single injector system in the previous study. The experimental result was qualitatively consistent with the calculated results even though its HRR had less peak and longer duration than ideal. In this study, a new thermodynamic cycle with higher HRR in the expansion stroke than the ideal Sabathe cycle, was thus developed. The proposed (higher) HRR was achieved by overlapped fuel injection with the three injectors.
Technical Paper

Exploring and Modeling the Chemical Effect of a Cetane Booster Additive in a Low-Octane Gasoline Fuel

Increasing the internal combustion engine efficiency is necessary to decrease their environmental impact. Several combustion systems demonstrated the interest of low temperature combustion to move toward this objective. However, to ensure a stable combustion, the use of additives has been considered in a several studies. Amongst them, 2-Ethylhexyl nitrate (EHN) is considered as a good candidate for these systems but characterizing its chemical effect is required to optimize its use. In this study, its promoting effect (0.1 - 1% mol.) on combustion has been investigated experimentally and numerically in order to better characterize its behavior under different thermodynamic and mixture. Rapid compression machine (RCM) experiments were carried out at equivalence ratio 0.5 and pressure 10 bar, from 675 to 995 K. The targeted surrogate fuel is a mixture of toluene and n-heptane in order to capture the additive effect on both cool flame and main ignition.
Technical Paper

Water Injection to Improve Direct Injection Spark Ignition Engine Efficiency

The increasing use of downsized turbocharged gasoline engines for passengers cars and the new European homologation cycles (WLTC and RDE) both impose an optimization of the whole engine map. More weight is given to mid and high loads, thus enhancing knock and overfueling limitations. At low and moderate engine speeds, knock mitigation is one of the main issues, generally addressed by retarding spark advance thereby penalizing the combustion efficiency. At high engine speeds, knock still occurs but is less problematic. However, in order to comply with thermo-mechanical properties of the turbine, excess fuel is injected to limit the exhaust gas temperature while maximizing engine power, even with cooled exhaust manifolds. This also implies a decrease of the combustion efficiency and an increase in pollutant emissions. Water injection is one way to overcome both limitations.
Technical Paper

Towards Quantitative Prediction of Urea Thermo-Hydrolysis and Deposits Formation in Exhaust Selective Catalytic Reduction (SCR) Systems

In order to assist in fast design cycle of Diesel engines selective catalytic reduction (SCR) exhaust systems, significant endeavor is currently being made to improve numerical simulation accuracy of urea thermo-hydrolysis. In this article, the achievements of a recently developed urea semi-detailed decomposition chemical scheme are assessed using three available databases from the literature. First, evaporation and thermo-hydrolysis of urea-water solution (UWS) single-droplets hanged on a thin thermocouple ring (127 μm) as well as on a thick quartz (275 μm), have been simulated at ambient temperature conditions ranging from 473K to 773K. It has been shown that the numerical results, in terms of evaporation rate and urea gasification, as well as droplet temperature history are very close to the experiments if the heat flux coming from the droplet support is properly accounted for.
Technical Paper

Detonation Peninsula for TRF-Air Mixtures: Assessment for the Analysis of Auto-Ignition Events in Spark-Ignition Engines

Controlling abnormal auto-ignition processes in spark-ignition engines requires understanding how auto-ignition is triggered and how it propagates inside the combustion chamber. The original Zeldovich theory regarding auto-ignition propagation was further developed by Bradley and coworkers, who highlighted different modes by considering various hot spot characteristics and thermodynamic conditions around them. Dimensionless parameters (ε, ξ) were then proposed to classify these modes and to define a detonation peninsula for H2-CO-air mixtures. This article deals with numerical simulations undertaken to check the relevancy of this original detonation peninsula when considering realistic gasoline fuels. 1D calculations of auto-ignition propagation are performed using the Tabulated Kinetics for Ignition model.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

Potential of a Production DI Two-Stroke Engine Adapted for Range Extender and Motorcycle Applications

The main purpose of this paper will be to investigate if a small snowmobile gasoline Direct Injected (DI) two-stroke engine has the potential to be adapted for two other types of applications: as a range extender (REX) for electric vehicles and for a motorcycle application. For the REX application, the main requested specifications (NVH, lightweight, compactness, minimum production cost and easy maintenance), correspond well to the main features of DI 2-stroke engines. The potential of a modified production engine operating in part load ultra-low NOx Controlled Auto Ignition (CAI) to meet the Euro 6 emissions standards on the NEDC cycle has already been demonstrated in a previous paper. In the first part of this new paper, we will investigate which solutions can be used to maintain this potential with even stricter legislations based on Euro 6d, WLTP cycle and Real Driving Emissions (RDE).
Technical Paper

Combustion Optimization of a Multi-Cylinder CI Engine Running with a Low RON Gasoline Fuel Considering Different Air Loop and After-Treatment Configurations

Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in compression ignition engines. In this context, low research octane number (RON) gasoline, a refinery stream derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content compared to diesel, CO2 benefits are also expected when used in such engines. In previous studies, different cetane number (CN) fuels have been evaluated and a CN 35 fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern and nozzle design have been performed on a single cylinder compression-ignition engine.
Technical Paper

Diesel Oxidation Catalyst and HC Investigations of a Low RON Gasoline Fuel in a Compression Ignition Engine

Fuels from crude oil are the main energy vector used in the worldwide transport sector. But conventional fuel and engine technologies are often criticized, especially Diesel engines with the recent “Diesel gate”. Engine and fuel co-research is one of the main leverage to reduce both CO2 footprint and criteria pollutants in the transport sector. Compression ignition engines with gasoline-like fuels are a promising way for both NOx and particulate emissions abatement while keeping lower tailpipe CO2 emissions from both combustion process, physical and chemical properties of the low RON gasoline. To introduce a new fuel/engine technology, investigation of pollutants and After-Treatment Systems (ATS) is mandatory. Previous work [1] already studied soot behavior to define the rules for the design of the Diesel Particulate Filter (DPF) when used with a low RON gasoline in a compression ignition engine.
Technical Paper

The Impact of Intake Valve Dynamics on Knock Propensity in a Dual-Fuel SI Engine

In this study, the impact of the intake valve timing on knock propensity is investigated on a dual-fuel engine which leverages a low octane fuel and a high octane fuel to adjust the fuel mixture’s research octane rating (RON) based on operating point. Variations in the intake valve timing have a direct impact on residual gas concentrations due to valve overlap, and also affect the compression pressure and temperature by altering the effective compression ratio (eCR). In this study, it is shown that the fuel RON requirement for a non-knocking condition at a fixed operating point can vary significantly solely due to variations of the intake valve timing. At 2000 rpm and 6 bar IMEP, the fuel RON requirement ranges from 80 to 90 as a function of the intake valve timing, and the valve timing can change the RON requirement from 98 to 104 at 2000 rpm and 14 bar IMEP.
Technical Paper

Low RON Gasoline Calibration on a Multi-Cylinder Compression Ignition Engine to Fulfill the Euro 6d Regulation

Reducing the CO2 footprint, limiting the pollutant emissions and rebalancing the ongoing shift demand toward middle-distillate fuels are major concerns for vehicle manufacturers and oil refiners. In this context, gasoline-like fuels have been recently identified as good candidates. Straight run naphtha, a refinery stream derived from the atmospheric crude oil distillation process, allows for a reduction of both NOx and particulate emissions when used in compression-ignition engines. CO2 benefits are also expected thanks to naphtha’s higher H/C ratio and energy content compared to diesel. In previous studies, wide ranges of Cetane Number (CN) naphtha fuels have been evaluated and CN 35 naphtha fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern, nozzle design and air-path technology, have been performed on a light-duty single cylinder compression-ignition engine.
Technical Paper

A Fully-Analytical Fuel Consumption Estimation for the Optimal Design of Light- and Heavy-Duty Series Hybrid Electric Powertrains

Fuel consumption is an essential factor that requires to be minimized in the design of a vehicle powertrain. Simple energy models can be of great help - by clarifying the role of powertrain dimensioning parameters and reducing the computation time of complex routines aiming at optimizing these parameters. In this paper, a Fully Analytical fuel Consumption Estimation (FACE) is developed based on a novel GRaphical-Analysis-Based fuel Energy Consumption Optimization (GRAB-ECO), both of which predict the fuel consumption of light- and heavy-duty series hybrid-electric powertrains that is minimized by an optimal control technique. When a drive cycle and dimensioning parameters (e.g. vehicle road load, as well as rated power, torque, volume of engine, motor/generators, and battery) are considered as inputs, FACE predicts the minimal fuel consumption in closed form, whereas GRAB-ECO minimizes fuel consumption via a graphical analysis of vehicle optimal operating modes.
Journal Article

Simulation and Optical Diagnostics to Characterize Low Octane Number Dual Fuel Strategies: a Step Towards the Octane on Demand Engine

Reduction of CO2 emissions is becoming one of the great challenges for future gasoline engines. Downsizing is one of the most promising strategies to achieve this reduction, though it facilitates occurrence of knocking. Therefore, downsizing has to be associated with knock limiting technologies. The aim of the current research program is to adapt the fuel Research-Octane-Number (RON) injected in the combustion chamber to prevent knock occurrence and keep combustion phasing at optimum. This is achieved by a dual fuel injection strategy, involving a low-RON naphtha-based fuel (Naphtha, RON 71) and a high-RON octane booster (Ethanol, RON107). The ratio of fuel quantity on each injector is adapted to fit the RON requirement as a function of engine operating conditions. Hence, it becomes crucial to understand and predict the mixture preparation, to quantify its spatial and cycle-to-cycle variations and to apprehend the consequences on combustion behavior - knock especially.
Technical Paper

An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations

The 3-Zones Extended Coherent Flame Model (ECFM3Z) and the Tabulated Kinetics for Ignition (TKI) auto-ignition model are widely used for RANS simulations of reactive flows in Diesel engines. ECFM3Z accounts for the turbulent mixing between one zone that contains compressed air and EGR and another zone that contains evaporated fuel. These zones mix to form a reactive zone where combustion occurs. In this mixing zone TKI is applied to predict the auto-ignition event, including the ignition delay time and the heat release rate. Because it is tabulated, TKI can model complex fuels over a wide range of engine thermodynamic conditions. However, the ECFM3Z/TKI combustion modeling approach requires an efficient predictive spray injection calculation. In a Diesel direct injection engine, the turbulent mixing and spray atomization are mainly driven by the liquid/gas coupling phenomenon that occurs at moving liquid/gas interfaces.
Technical Paper

Study of ECN Injectors’ Behavior Repeatability with Focus on Aging Effect and Soot Fluctuations

The Engine Combustion Network (ECN) has become a leading group concerning the experimental and computational analysis of engine combustion phenomena. In order to establish a coherent database for model validation, all the institutions participating in the experimental effort carry out tests at well-defined boundary conditions and using wellcharacterized hardware. In this framework, the reference Spray A injectors have produced different results even when tested in the same facility, highlighting that the nozzle employed and its fouling are important parameters to be accounted for. On the other hand, the number of the available Spray A injectors became an issue, due to the increasing number of research centers and simultaneous experiments taking place in the ECN community. The present work has a double aim: on the one hand, to seek for an appropriate methodology to “validate” new injectors for ECN experiments and to provide new hardware for the ECN community.
Technical Paper

Potential of CN25 Naphtha-Based Fuel to Power Compression Ignition Engines

Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in Diesel engines. In this context, straight-run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. The current study is one step further toward naphtha-based fuel to power compression ignition engines. The potential of a cetane number 25 fuel (CN25), resulting from a blend of hydro-treated straight-run naphtha CN35 with unleaded non-oxygenated gasoline RON91 was assessed. For this purpose, investigations were conducted on multiple fronts, including experimental activities on an injection test bed, in an optically accessible vessel and in a single cylinder engine. CFD simulations were also developed to provide relevant explanations.
Technical Paper

Innovative Approach and Tools to Design Future Two-Wheeler Powertrain

As congestion increases and commute times lengthen with the growing urbanization, many customers will look for effective mobility solutions. Two-wheeler are one of the solutions to deal with these issues, in particular if equipped with electrified powertrains for minimized local noise and air pollutant emissions. Scooters powertrain technology is predominantly based on Spark Ignition Engine (ICE) associated with a Continuously Variable Transmissions (CVT) and a Centrifugal Clutch. Nevertheless, even though CVT gives satisfaction in simplicity, fun to drive, cost effectiveness and vehicle dynamics, its efficiency is an undeniable drawback. Indeed, a conventional CVT is wasting more than 50% of ICE effective power in customer driving conditions. Consequently, those vehicles have high fuel consumption relative to their size, and are equipped with overpowered and heavy internal combustion engines, allowing a large area for further improvements.