Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Outline of Material Circulation — Closed Habitation Experiments Conducted in 2005 – 2007 Using Closed Ecology Experiment Facilities

2009-07-12
2009-01-2580
The Closed Ecology Experiment Facilities (CEEF) were installed to collect data for estimation of transfer of radionuclides from atmosphere to humans in the ecosystem. The first target among the radio-nuclides is 14C. In order to validate function of material circulation in an experimental system constructed in the CEEF, circulation of air constituents, water and materials in waste was demonstrated connecting the Closed Plant Experiment Facility (CPEF) and the Closed Animal and Human habitation Experiment Facility (CAHEF) of the CEEF, since 2005 to 2007. The CPEF has a Plant Cultivation Module (PCM), which comprises of three plant chambers illuminated solely by artificial lighting, one plant chamber illuminated by both natural and artificial lighting, a space for preparation, and an airlock, and a physical/chemical material circulation system.
Technical Paper

Circulation of Water in Addition to CO2, O2 and Plant Biomass in an Artificial Ecosystem Comprised of Humans, Goats and Crops During Three 2-Weeks Closed Habitation Experiments Using CEEF

2007-07-09
2007-01-3091
The Closed Ecology Experiment Facilities (CEEF) were installed to collect data for realistic estimation of radiocarbon transfer in the ecosystem. Two-week experiments were conducted three times from September to November of 2006, in which two human subjects called as eco-nauts were enclosed and worked in an airtight facility, the CEEF. The eco-nauts were changed after a week from beginning of each experiment. In these experiments, a Plant Module (PM) with 23 crops, including rice, soybean, peanut, and sugar beet, was connected to an Animal & Habitation Module (AHM) which included the eco-nauts and two goats. 91.8-94.6% (by weight) of the food consumed by the eco-nauts and 79% of the feed to the goats (straw, leaf and bran of rice, leaf and stem of soybean, and leaf, stem and shell of peanut) were produced from crops in the PM. Amount of oxygen produced by the crops was more than the amount consumed by respiration of human and animals in these experiments.
Technical Paper

Carbon Flow in an Artificial Ecosystem Comprised of Crew, Goats and Crops for Three 1-Week Confined Habitation Experiments Using CEEF

2006-07-17
2006-01-2075
Three 1-week experiments were conducted from September to October of 2005 in which two human subjects called as eco-nauts were enclosed and worked in an airtight facility called Closed Ecosystem Experiment Facilities (CEEF). The test involved connecting a Plant Module (PM) with 23 crops, including rice, soybean, peanut, and sugar beet, to an Animal & Habitation Module (AHM), which included the eco-nauts and two Shiba goats. Although only 34% (by weight) of the food consumed by the eco-nauts was produced by crops in the PM in the first experiment, it was 81% in the second and third experiments. As for feed for the goats, although all was Timothy hay was supplied from outside in the first experiment, all of the feed (rice straw, soybean leaf and peanut shell) was produced in the PM in the second and third experiments. In all these experiments, the crops produced more oxygen than the amount consumed by respiration of human and animals.
Technical Paper

Carbon Dioxide Separation and Recovery from the Closed Animal Breeding and Habitation Module of the CEEF during Closed Habitation Experiments

2006-07-17
2006-01-2076
In the Closed Ecology Experiment Facilities (CEEF), an artificial ecosystem including crops, Shiba goats, and human inhabitants is to be constructed in order to conduct long-term habitation experiments. For carbon circulation in this artificial ecosystem, CO2 needs to be recovered from the air of animal breeding and habitation rooms using a CO2 separator and to be injected into growth chambers for consumption in crop photosynthesis. Moreover, daily crop yield from the growth chambers needs to be stabilized to drive carbon circulation in the artificial ecosystemwithout huge buffers. Because crops are cultivated in a staggered manner, controlling atmospheric CO2 concentration in the growth chambers at a constant level during light periods throughout crop cultivation is necessary for stabilizing daily crop yield.
Technical Paper

Paper Production in an Advanced Life Support System (ALSS)

2005-07-11
2005-01-2929
This paper introduces a concept and a design to supply paper products for an earth based Advanced Life Support System (ALSS) test bed and it shows some results of paper production trials on the ALSS using inedible biomass. Rice plants (i.e. straw and roots), and soybean stems were pulped by boiling and/or alkali soaking and a mechanical processing method. Paper could be produced from both and exhibited different characteristics. Paper with quality suitable for hygienic tissue could be obtained and very absorbent paper was also possible. A rapid pulping method without a chemical process was also investigated. A potential for reducing chemical consumption, liquid waste and labor cost of paper production in the ALSS was demonstrated.
Technical Paper

Considerations of Material Circulation in CEEF Based on the Recent Operation Strategy

2003-07-07
2003-01-2453
In the Closed Ecology Experiment Facilities (CEEF), with integrating the Closed Plantation Experiment Facilities (CPEF) and the Closed Animal Breading & Habitation Facilities (CABHF), closed habitation experiments without material exchange with the outside will be conducted after the 2005 fiscal year. Cultivation experiments of about 30 crops and the integrating test of the material circulation system required for the closed habitation experiments have been performed since 2000 fiscal year. Using data reported in these experiments, material circulation in CEEF is simulated based on the recent operation strategy, and the storage capacity needed for the buffer of an air processing subsystem was estimated. In order for two humans to dwell over 120 days, the storage capacities of the carbon dioxide tank, the oxygen tank, and the waste gas tank in CPEF, and the carbon dioxide tank and the oxygen tank in CABHF are 820 g, 2830 g, 4425 g, 1780 g, and 1792 g, respectively.
Technical Paper

Simulation to Support an Integration Test Project of CEEF

2001-07-09
2001-01-2130
A simulation of an open mode system experiment was run using the same experimental conditions as an integration test conducted from September 1999 to February 2000 using the Closed Plant Experiment Facility at the Institute for Environmental Sciences in order to evaluate the operation of closed mode system to be conducted in future. Operation of the open mode system experiment required a supply of water and carbon dioxide from the outside, and the discharge of nutrient waste water and oxygen. The present simulation verified the feasibility of using non-integrated wet-oxidation processor, nutrient synthesis unit and nutrient waste water processor connected within a closed mode system, and it was confirmed that sufficient material circulation could be achieved when rice and soybeans were divided into six beds with different growing stages to facilitate control of the nutrient solution.
Technical Paper

Preliminary research on Energy Metabolism of Candidate Animals in Closed Ecology Experiment Facilities (CEEF)

2000-07-10
2000-01-2336
The basal metabolism of the Candidate Animal is mainly on energy metabolism that was estimated for future animal breeding in CEEF as preliminary research. The amounts of gas exchange in the respiration and heat production of the Shiba goat (native Japanese goat) were analyzed to predict energy and material flow of the animal breeding system in the Closed Ecology Experiment Facilities (CEEF). Experimental animals were fed Timothy hay or inedible parts of rice cultivated in CEEF. The feces and urine were collected during the 7-day metabolism measurement period after a 2-week preliminary breeding period. The O2 consumption, CO2 production, and CH4 production were measured by a mass spectrometric respiration gas analysis system on the 7th day of the metabolism measurement period. Heat production was also obtained from these data. O2 consumption, CO2 production and CH4 production were 100.3 - 153.8 L, 127.2 - 174.0 L and 5.7 - 10.8 L per day (at 0°C, 0.101MPa), respectively.
Technical Paper

Plant Nutrient Solution Production Subsystem and Mineral Recycling in CEEF

2000-07-10
2000-01-2335
In the Closed Ecology Experiment Facilities (CEEF), waste materials such as plant inedible parts, feces and urine of animal and human, and garbage are to be decomposed to inorganic materials by a physical and chemical (P/C) process; Wet Oxidation (W/O). It is known that significant part of nitrogen (N) in the waste materials is reduced to gaseous nitrogen (N2) through W/O process. There is also some deposition of minerals such as iron (Fe) and phosphorous (P) through W/O process. Nitrogen Fixation Subsystem (NFS) produces ammonia (NH3) which is one of end products of NFS, from N2 separated from module air and hydrogen (H2) derived from electrolyses of water, and also produces nitrate (HNO3) from a part of the NH3 and oxygen (O2) derived from electrolyses of water. As another end product of NFS, ammonium nitrate (NH4NO3) is produced from the HNO3 and a part of the NH3.
Technical Paper

Material Circulation Design Based on Organic Matter Analysis of Edible and Inedible Parts of Plants for CEEF

1996-07-01
961414
In order to verify the material circulation design for a Closed Ecology Experiment Facilities, CEEF, the organic element analysis of edible and inedible parts of the major candidate plants (rice, soybean, sesame and komatsuna (Brassica campestris)) has been carried out experimentally and by using food analysis data. In the experiment, rice, soybean and sesame were cultivated by hydroponics and soil culture for this purpose. The organic element analysis data from the food analysis data were made using empirical chemical equations formulated as to major nutriments by Volk and Rummel. The experimental results showed good agreement with those obtained from the food analysis data. Komatsuna has high nitrogen content. Inedible parts of rice, soybean and sesame have almost the same constituent ratio. The edible part of soybean contains five times as much nitrogen as its inedible part. Rice shows no significant difference between the edible and inedible parts.
Technical Paper

Study of Oxygen Recovery System using Reduction of Carbon Dioxide

1995-07-01
951558
The simulation test for the controlled ecological life support system is planned by Institute for Environmental Sciences (IES) of Japan. The purpose of this test is to confirm that in the closed space, the environmental and life support system is normally carried out. The establishments to perform the simulation test has been constructed at Rokkasho-mura village, Aomori prefecture, in Japan. We have been developed “Oxygen Recovery System” which decompose carbon dioxide (CO2) and regenerate oxygen(O2), for the simulation test. The oxygen recovery system consists of a equipment to reduce CO2 using the Sabatier method and a equipment to regenerate oxygen using water electrolysis method (Refer to Figure 1). And this reaction principle is as follows; The carbon dioxide is produced by the respiration of human, animals and plants. The carbon dioxide is reduced to methane and water using hydrogen in the first reaction.
Technical Paper

Construction of CEEF is Just Started CEEF:Closed Ecology Experiment Facilities

1995-07-01
951584
Construction of Closed Ecology Experiment Facilities (CEEF) is started in Rokkasho village of Aomori prefecture, the northern part of Honshu island in Japan. CEEF consist of Closed Plant Experiment Facility (CPEF) and Closed Geo-Hydrosphere Experiment Facility (CGEF) with capability to simulate ecological systems containing plants, animals, human, trees and sea living things. These biospecies are selected according to experimental plans and are maintained their lives in controlled environments. Recyclings of materials circulating in the closed system of CEEF are made mainly utilizing physical chemical treatments. The construction of CEEF will be completed by 1998. This paper mainly describes design of CPEF.
X