Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Effect of Different Fuels Properties on Emissions and Performance of a Light Duty Four-Cylinder Diesel Engine Under Premixed Combustion

2014-10-13
2014-01-2674
The use of biodiesel or oxygenated fuels from renewable sources in diesel engines is of particular interest because of the low environmental impact that can be achieved. The present paper reports results of an experimental investigation performed on a light duty diesel engine fuelled with biodiesel, gasoline and butanol mixed, at different volume fractions, with mineral diesel. The investigation was performed on a turbocharged DI four cylinder diesel engine for automotive applications equipped with a common rail injection system. Engine tests were carried out at 2500 rpm, 0.8 MPa of brake mean effective pressure selecting a single injection strategy and performing a parametric analysis on the effect of combustion phasing and oxygen concentration at intake on engine performance and exhaust emissions. The experiments demonstrated that the fuel properties have a strong impact on soot emissions.
Video

An Experimental Analysis on Diesel/n-Butanol Blends Operating in Partial Premixed Combustion in a Light Duty Diesel Engine

2012-06-18
This paper reports results of an experimental investigation performed on a commercial diesel engine supplied with fuel blends having low cetane number to attain a simultaneous reduction in NOx and smoke emissions. Blends of 20% and 40% of n-butanol in conventional diesel fuel have been tested, comparing engine performance and emissions to diesel ones. Taking advantage of the fuel blend higher resistance to auto ignition, it was possible to extend the range in which a premixed combustion is achieved. This allowed to match the goal of a significant reduction in emissions without important penalties in fuel consumption. The experimental activity was carried on a turbocharged, water cooled, 4 cylinder common rail DI diesel engine. The engine equipment included an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injector.
Technical Paper

An Experimental Analysis on Diesel/n-Butanol Blends Operating in Partial Premixed Combustion in a Light Duty Diesel Engine

2012-04-16
2012-01-1127
This paper reports results of an experimental investigation performed on a commercial diesel engine supplied with fuel blends having low cetane number to attain a simultaneous reduction in NOx and smoke emissions. Blends of 20% and 40% of n-butanol in conventional diesel fuel have been tested, comparing engine performance and emissions to diesel ones. Taking advantage of the fuel blend higher resistance to auto ignition, it was possible to extend the range in which a premixed combustion is achieved. This allowed to match the goal of a significant reduction in emissions without important penalties in fuel consumption. The experimental activity was carried on a turbocharged, water cooled, 4 cylinder common rail DI diesel engine. The engine equipment included an exhaust gas recirculation system controlled by an external driver, a piezo-quartz pressure transducer to detect the in-cylinder pressure signal and a current probe to acquire the energizing current to the injector.
Technical Paper

PIV Investigation of High Swirl Flow on Spray Structure and its Effect on Emissions in a Diesel-Like Environment

2011-04-12
2011-01-1286
The paper presents results of an experimental investigation of the fluid dynamic processes during the air/fuel mixture formation period between an evaporating diesel spray and swirl air flow under realistic engine conditions. Particle Image Velocimetry (PIV) experiments have been carried out using an optically accessible prototype 2-stroke diesel engine equipped with a swirled combustion chamber. The flow within the chamber assumes a well structured swirl motion, similar to that developing in a real diesel engine, operating at high swirl ratio. The engine has been equipped with a common rail injection system and a solenoid-controlled injector, in use on automotive engines for the European market, able to manage multiple injection strategies. Two injector nozzles have been tested: a micro-sac 5-hole nozzle, 0.13 mm diameter, 150° spray angle and a 7-hole, 0.141 mm diameter, 148° spray angle.
Technical Paper

Experimental and Numerical Investigation on Mixture Formation in a HDDI Diesel Engine With Different Combustion Chamber Geometries

2005-09-11
2005-24-055
One of the most important phases in the development of direct-injected diesel engines is the optimization of the fuel spray evolution within the combustion chamber, since it strongly influences both the engine performance and the pollutant emissions. Aim of the present paper is to provide information about mixture formation within the combustion chamber of a heavy-duty direct injection (HDDI) diesel engine for marine applications. Spray evolution, in terms of tip penetration, is at first investigated under quiescent conditions, both experimentally and numerically, injecting the fuel in a vessel under ambient temperature and controlled gas back-pressure. Results of penetration and images of the spray from the optically accessible high-pressure vessel are used to investigate the capabilities of some state-of-the-art spray models within the STAR-CD software in correctly capturing spray shape and propagation.
Technical Paper

Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique

2003-03-03
2003-01-0002
The paper illustrates an experimental and numerical investigation of the flow generated by an intake port model for a heavy duty direct injection (HDDI) Diesel engine. Tests were carried out on a steady state air flow test rig to evaluate the global fluid-dynamic efficiency of the intake system, made by a swirled and a directed port, in terms of mass flow rate, flow coefficients and swirl number. In addition, because the global coefficients are not able to give flow details, the Laser Doppler Anemometry (LDA) technique was applied to obtain the local distribution of the air velocity within a test cylinder. The steady state air flow rig, made by a blower and the intake port model mounted on a plexiglas cylinder with optical accesses, was assembled to supply the actual intake flow rate of the engine, setting the pressure drop across the intake ports atûP=300 and 500 mm of H2O.
Technical Paper

Potential of Multiple Injection Strategy for Low Emission Diesel Engines

2002-03-04
2002-01-1150
A PC-programmable electronic control unit (PECU), able to manage both conventional and future electronic injection systems to make a fixed number of consecutive injections (1 to 5 or more) controlling the injection pressure and the injection pulses duration as well as the separation time or dwell in between was used to study the behaviour of a Bosch common rail injection system both on dynamic spray bench and on engine test bench. The PECU allowed a reduction in the dwell time between consecutive injection pulses from the current value of 1800 μs to 500 μs. Photographic sequences of a five holes mini-sac nozzle making five consecutive injections at 400 - 800 and 1200 bar respectively were taken at ambient pressure and temperature. They showed that both spray penetration and cone angle at all operative conditions are very uniform and stable.
Technical Paper

A Study of Physical and Chemical Delay in a High Swirl Diesel System via Multiwavelength Extinction Measurements

1998-02-23
980502
The characterization of a turbulent diesel spray combustion process has been carried out in a divided chamber diesel system with optical accesses. Laser Doppler Anemometry, spectral extinction and flame intensity measurements have been performed from U.V., to visible from the start of injection to the end of combustion, at fixed air/fuel ratio and different engine speeds. Spatial distribution of fuel and vapor as well as the ignition location and soot distribution have been derived in order to study the mechanism of the air-fuel interaction and the combustion process. The analysis of results has shown that the high swirling motion transports the fuel towards the left part of the chamber and breaks up the jet into small droplets of different sizes and accelerates the fuel vaporization. Then, chemical and physical overlapped phases were observed during the ignition delay, contributing both to autoignition.
Technical Paper

Integral and Micro Time Scales Estimate in a D.I. Diesel Engine

1997-05-01
971678
The present paper aims at developing a general method to estimate integral and microtime scales of turbulent in-cylinder flow field in reciprocating engines. The ensemble average technique was used to compute the integral time scale from the single point time autocorrelation function, whereas the microtime scale, representative of the most rapid changes that occur in the fluctuation, was computed as the intercept of the parabola that matches the autocorrelation function at the origin. Further, the microtime scale was also estimated by spectral analysis through the energy spectral density function of the ensemble turbulent fluctuation and the results obtained by the two methods were compared. The procedures were applied to the tangential component of the instantaneous velocity data collected, at different engine speeds (1,000, 1,500, 2,000 rpm), within a motored d.i. diesel engine equipped with a re-entrant combustion chamber, using the Laser Doppler Anemometry (LDA) technique.
Technical Paper

LDV Measurements of Integral Length Scales in an IC Engine

1996-05-01
961161
Tangential component of velocity and turbulence were measured in three locations in the re-entrant combustion chamber of a motored single-cylinder d.i. Diesel engine (0.435 liter, 21:1 compression ratio) using a Laser Doppler Velocimetry system. Moreover, a modified LDV system with two-probe volume was used to measure directly lateral integral length scales of the velocity tangential component at two engine speeds. The measurements were made on a horizontal plane at 5 mm below the engine head from 100 degrees before TDC to 60 degrees after TDC of both the compression and expansion strokes. The engine was motored at 1,000 and 1,500 rpm respectively. An ensemble-averaging technique was performed to analyze the instantaneous velocity information supplied by two Burst Spectrum Analyzers. The lateral integral length scale was obtained from the integral of the spatial correlation coefficient of the velocity fluctuation for different separation.
Technical Paper

Analysis of In-Cylinder Turbulent Air Motion Dependence on Engine Speed

1994-03-01
940284
In-cylinder cycle-resolved LDV measurements have been made in a diesel engine having a high-squish re-entrant combustion chamber with compression ratio of 21:1. The engine has been motored in the range of 1000 to 3000 rpm thanks to the use of self-lubricating seeding particles. Conventional ensemble-averaging and filtering techniques have been used for analyzing instantaneous velocity data obtained at two points along a diameter located in a horizontal plane at 5 mm below the engine head. The dependence of the mean motion and turbulence on engine speed has been evaluated. The effect of cut-off frequency selection on turbulence values has been also analyzed. Moreover, the Kolmogorov's -5/3 power domain has been investigated in detail by spectral analysis on the instantaneous velocity data.
Technical Paper

Numerical and Experimental Analysis of Diesel Air Fuel Mixing

1993-11-01
931948
The air fuel mixing process of a small direct injection (d.i.) diesel engine, equipped with two different re-entrant combustion chambers and two nozzles having unlike spray angles, has been studied by integrated use of in-cylinder laser Doppler velocimetry (LDV) measurements, engine tests, and KIVA simulations. The LDV measurements have been carried out in an engine with optical access motored at 2200 rpm. The engine tests have been performed on a similar engine at the same speed, at fixed start of combustion, and different air-fuel ratio. The KIVA-II simulations have been made using as initial conditions the parameters determined by LDV and engine tests. The re-entrant bowl with higher levels of air velocity and turbulent kinetic energy at the time of injection gives the best performance. The nozzle having a spray angle of 150° which injects the fuel into the regions at higher turbulent kinetic energy lowers the smoke emission levels.
Technical Paper

Particulate Measurement by Simultaneous Polychromatic Scattering and Extinction Coefficients

1992-02-01
920113
A chemical and physical characterization of particulate emitted in undiluted exhaust of single cylinder direct injection (D.I.) diesel engine was made by an optical technique. On-line scattering and extinction measurements in the spectral range from 200 to 500nm were carried out in the exhaust ofthe engine operating under steady-state conditions. These measurements provided a useful tool for the comprehension of chemical and physical structure of the particulate. They allowed the evaluation in real time of the size, the concentration and also the optical properties. Preliminary results of size and mass concentration of particulate are presented. A good agreement was observed comparing the results with those obtained by gravimetric measurements, TEM and X-ray diffraction. HIGH EFFICENCY OF DIESEL ENGINES and their ability to burn heavy fuels make them ofgreat interest in the transportation field.
Technical Paper

In-Cylinder Flow Measurements by LDA and Numerical Simulation by KIVA-II Code

1992-02-01
920155
The fluid-mechanic behaviour of straight-sided and re-entrant chamber geometries has been studied using laser doppler anemometry (LDA) technique. Measurements have been carried out during the compression stroke in a direct injection diesel engine, representative of medium size family, operating at 1000 rpm under motored conditions. The mean motion and turbulence intensity have been computed using a filtering procedure on the LDA data. Using the second version of KIVA code, the air flow field evolution during the same crank angle period has been also computed. To perform proper comparisons between measured and computed values of mean velocity and turbulence intensity, a careful choice of the initial conditions for computations has been performed. Reasonable agreement has been found between computed and measured mean swirl velocities for both combustion chamber geometries tested. On the contrary, the computed turbulence intensities underestimate those measured.
X