Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Experimental Characterization of Methane Direct Injection from an Outward-Opening Poppet-Valve Injector

2019-09-09
2019-24-0135
The in-cylinder direct injection of natural gas can be a further step towards cleaner and more efficient internal combustion engines (ICE). However, the injector design and its characterization, both experimentally and by numerical simulation, is challenging because of the complex fluid dynamics related to gas compressibility and the small length scale. In this work, the under-expanded flow of methane from an outward-opening poppet-valve injector has been experimentally characterized by high-speed schlieren imaging. The investigation has been performed at ambient temperature and pressure and different nozzle pressure ratios (NPR) ranging from 10 to 18. The gaseous jet has been characterized in terms of its macroscale parameters. A scaling-law analysis of the results has been performed. The gas-dynamic structure at the nozzle exit has been also investigated.
Technical Paper

Analysis of Dual Fuel Combustion in Single Cylinder Research Engine Fueled with Methane and Diesel by IR Diagnostics

2019-04-02
2019-01-1165
In the present study, dual fuel mode is investigated in a single cylinder optical compression ignition (CI) research engine. Methane is injected in the intake manifold while the diesel is delivered via the standard injector directly into the engine. The aim is to study by non-intrusive diagnostics the effect of increasing methane concentration at constant injected diesel amount during the combustion evolution from start of combustion. IR imaging is applied in cycle resolved mode. Three filters are adopted to detect from injection to combustion phase with high spatial and temporal resolution: OD1.45 (3-5.5 μm), band pass 3.3 μm (hydrocarbons) and band pass 4.2 μm (CO2). Using the band pass IR imaging qualitative information about fuel-vapor distribution and ignition locations during low and high temperature combustion have been provided.
Technical Paper

CFD Analysis of the Combustion Process in Dual-Fuel Diesel Engine

2018-04-03
2018-01-0257
Dual-fuel technology has the potential to offer significant improvements in the emissions of carbon dioxide from light-duty compression ignition engines. The dual-fuel (diesel/natural gas) concept represents a possible solution to reduce emissions from diesel engines by using natural gas (methane) as an alternative fuel. Methane was injected in the intake manifold while the diesel oil was injected directly into the engine. The present work describes the results of a numerical study on combustion process of a common rail diesel engine supplied with natural gas and diesel oil. In particular, the aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution. The study of dual-fuel engines that is carried out in this paper aims at the evaluation of the CFD potential, by a 3-dimensional code, to predict the main features of this technology.
Technical Paper

Correlation between Simulated Volume Fraction Burned Using a Quasi-Dimensional Model and Flame Area Measured in an Optically Accessible SI Engine

2017-03-28
2017-01-0545
Multi-fuel operation is one of the main topics of investigative research in the field of internal combustion engines. Spark ignition (SI) power units are relatively easily adaptable to alternative liquid-as well as gaseous-fuels, with mixture preparation being the main modification required. Numerical simulations are used on an ever wider scale in engine research in order to reduce costs associated with experimental investigations. In this sense, quasi-dimensional models provide acceptable accuracy with reduced computational efforts. Within this context, the present study puts under scrutiny the assumption of spherical flame propagation and how calibration of a two-zone combustion simulation is affected when changing fuel type. A quasi-dimensional model was calibrated based on measured in-cylinder pressure, and numerical results related to the two-zone volumes were compared to recorded flame imaging.
Technical Paper

Combustion Analysis of Dual Fuel Operation in Single Cylinder Research Engine Fuelled with Methane and Diesel

2015-09-06
2015-24-2461
In the present activity, dual fuel operation was investigated in a single cylinder research engine. Methane was injected in the intake manifold while the diesel was delivered via the standard injector directly into the engine. The aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution in an optically accessible engine. Emissions are in line with those previously published by other authors, it is noted no PM and constant NOx emissions. Moreover, a decrease of the brake specific CO emissions and an increase of the brake specific THC for the operating condition with the highest premixed ratio was detected. THC was mainly constituted by methane unburned hydrocarbons. Combustion resulted more or less stable. Moreover, via both UV-VIS spectroscopy and digital imaging, the spatial distribution of several species involved in the combustion process was analyzed.
Technical Paper

An experimental investigation on combustion and engine performance and emissions of a methane-gasoline dual-fuel optical engine

2014-04-01
2014-01-1329
The use of methane as supplement to liquid fuel is one of the solution proposed for the reduction of the internal combustion engine pollutant emissions. Its intrinsic properties as the high knocking resistance and the low carbon content makes methane the most promising clean fuel. The dual fuel combustion mode allows improving the methane combustion acting mainly on the methane slow burning velocity and allowing lean burn combustion mode. An experimental investigation was carried out to study the methane-gasoline dual fuel combustion. Methane was injected in combustion chamber (DI fuel) while gasoline was injected in the intake manifold (PFI fuel). The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycles engine representative of the most popular two-wheel vehicles in Europe.
Technical Paper

Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine

2013-09-08
2013-24-0046
In this paper the methane-gasoline dual fuel combustion was investigated. Gasoline was injected in the intake manifold (PFI fuel), while methane was injected in the combustion chamber (DI fuel), in order to reproduce a stratified combustion. The combustion process and the related engine performance and pollutant emissions were analyzed. The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc engine representative of the most popular two-wheel vehicles in Europe. Optical measurements were performed to analyze the combustion process with high spatial and temporal resolution. In particular, optical techniques based on 2D-digital imaging were used to follow the flame front propagation and the soot and temperature concentration in the combustion chamber.
Journal Article

Characterization of CH4 and CH4/H2 Mixtures Combustion in a Small Displacement Optical Engine

2013-04-08
2013-01-0852
In the last years, even more attention was paid to the alternative fuels which can allow both reducing the fuel consumption and the pollutant emissions. Among gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels leading to lower CO₂ emissions; if compared to gasoline, CH₄ has wider flammable limits and better anti-knock properties, but lower flame speed. The addition of H₂ to CH₄ can improve the already good qualities of methane and compensate its weak points. In this paper a comparison was carried out between CH₄ and different CH₄/H₂ mixtures. The measurements were carried out in an optically accessible small single-cylinder, Port Fuel Injection spark ignition (PFI SI), four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycle engine representative of the most popular two-wheel vehicles in Europe.
X