Refine Your Search

Topic

Author

Search Results

Technical Paper

Parametric Study of Reduced Span Side Tapering on a Simplified Model with Wheels

2020-04-14
2020-01-0680
Many modern vehicles have blunt rear end geometries for design aesthetics and practicality; however, such vehicles are potentially high drag. The application of tapering; typically applied to an entire edge of the base of the geometry is widely reported as a means of reducing drag, but in many cases, this is not practical on real vehicles. In this study side tapers are applied to only part of the side edge of a simplified automotive geometry, to show the effects of practical implementations of tapers. The paper reports on a parametric study undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor model equipped with wheels. The aerodynamic effect of implementing partial side edge tapers is assessed from a full height taper to a 25% taper in both an upper and lower body configuration. These were investigated using force and moment coefficients, pressure measurements and planar particle image velocimetry (PIV).
Technical Paper

Active Grille Shutters Control and Benefits in Medium to Large SUV: A System Engineering Approach

2020-04-14
2020-01-0945
Whilst the primary function of the active grille shutters is to reduce the aerodynamic drag of the car, there are some secondary benefits like improving the warm up time of engine and also retaining engine heat when parked. In turbocharged IC engines the air is compressed (heated) in the turbo and then cooled by a low temperature cooling system before going into the engine. When the air intake temperature exceeds a threshold value, the engine efficiency falls - this drives the need for the cooling airflow across the radiator in normal operation. Airflow is also required to manage the convective heat transfer across various components in the engine bay for its lifetime thermal durability. Grill shutters can also influence the aerodynamic lift balance thus impacting the vehicle dynamics at high speed. The vehicle HVAC system also relies on the condenser in the front heat exchanger pack disposing the waste heat off in the most efficient way.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Journal Article

Development of a Virtual Multi-Axial Simulation Table to Enhance the Prognosis of Loads on Powertrain Mounting System During Durability Applications

2017-03-28
2017-01-0420
Vibration Isolation is the key objective of engine mounting systems in the automotive industry. A well-designed, robust engine mount must be capable of isolating the engine assembly from road-based excitations. Owing to high vibration inputs, engine mounts are susceptible to wear and failure. Thus, the durability of engine mounts is a cause for concern. A design validation methodology has been developed at Jaguar Land Rover using Multibody Dynamics (MBD) to enhance the prognosis of engine mount loads during full - vehicle durability test events. This paper describes the development of a virtual multi-axial simulation table rig (MAST Rig) to test virtual engine mount designs. For the particular example considered in this paper, a simple sinusoidal input is applied to the MAST Rig. The development of the virtual MAST Rig has been described including details of the modelling methodology.
Journal Article

Water Ingress Analysis and Splash Protection Evaluation for Vehicle Wading using Non-Classical CFD Simulation

2017-03-28
2017-01-1327
Physical testing of a vehicle wading through water is performed to gauge its capability to traverse through shallow to deep levels of water, wherein various vehicle performance parameters are observed, recorded and analysed. Jaguar Land Rover (JLR) has instigated and established a comprehensive CAE test procedure for assessing the same, which makes use of overset mesh (in a CFD environment) for a non-traditional approach to vehicle motion. The paper presents investigations made into the established wading physics, in order to optimise the splashing and water jet modelling. Large Scale Interface model was implemented instead of the previously standardised VOF-VOF fluid phase interaction model, and a comparison is made between the two. The implemented wheel rotation approach was scrutinised as well and appropriate inferences are drawn.
Journal Article

A Parametric Study of Automotive Rear End Geometries on Rear Soiling

2017-03-28
2017-01-1511
The motivation for this paper is to consider the effect of rear end geometry on rear soiling using a representative generic SUV body. In particular the effect of varying the top slant angle is considered using both experiment and Computational Fluid Dynamics (CFD). Previous work has shown that slant angle has a significant effect on wake shape and drag and the work here extends this to investigate the effect on rear soiling. It is hoped that this work can provide an insight into the likely effect of such geometry changes on the soiling of similarly shaped road vehicles. To increase the generality of results, and to allow comparison with previously obtained aerodynamic data, a 25% scale generic SUV model is used in the Loughborough University Large Wind Tunnel. UV doped water is sprayed from a position located at the bottom of the left rear tyre to simulate the creation of spray from this tyre.
Journal Article

The Effect of Passive Base Ventilation on the Aerodynamic Drag of a Generic SUV Vehicle

2017-03-28
2017-01-1548
Sports Utility Vehicles (SUVs) typically have a blunt rear end shape (for design and practicality), however this is not beneficial for aerodynamic drag. Drag can be reduced by a number of passive and active methods such as tapering and blowing into the base. In an effort to combine these effects and to reduce the drag of a visually square geometry slots have been introduced in the upper side and roof trailing edges of a squareback geometry, to take air from the freestream and passively injects it into the base of the vehicle to effectively create a tapered body. This investigation has been conducted in the Loughborough University’s Large Wind Tunnel with the ¼ scale generic SUV model. The basic aerodynamic effect of a range of body tapers and straight slots have been assessed for 0° yaw. This includes force and pressure measurements for most configurations.
Technical Paper

Complete Body Aerodynamic Study of three Vehicles

2017-03-28
2017-01-1529
Cooling drag, typically known as the difference in drag coefficient between open and closed cooling configurations, has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. It was seen as an academic yardstick before the advent of grille shutter systems. However, their introduction has increased the need to accurately predict the drag of a vehicle in a variety of different cooling configurations during vehicle development. This currently represents one of the greatest predictive challenges to the automotive industry due to being the net effect of many flow field changes around the vehicle. A comprehensive study is presented in the paper to discuss the notion of defining cooling drag as a number and to explore its effect on three automotive models with different cooling drag deltas using the commercial CFD solvers; STARCCM+ and Exa PowerFLOW.
Journal Article

Off-Road Tire-Terrain Interaction: An Analytical Solution

2016-09-27
2016-01-8029
A novel semi-analytical solution has been developed for the calculation of the static and dynamic response of an off road tire interacting with a deformable terrain, which utilizes soil parameters independent of the size of the contact patch (size-independent). The models involved in the solution presented, can be categorized in rigid and/or pneumatic tires, with or without tread pattern. After a concise literature review of related methods, a detailed presentation of the semi-analytical solution is presented, along with assumptions and limitations. A flowchart is provided, showing the main steps of the numerical implementation, and various test cases have been examined, characterized in terms of vertical load, tire dimensions, soil properties, deformability of the tire, and tread pattern. It has been found that the proposed model can qualitatively capture the response of a rolling wheel on deformable terrain.
Technical Paper

Robust Application of CBE and OBE for Engine Testing System Diagnosis

2016-04-05
2016-01-0987
Tightening emissions regulations are driving increasing focus on both equipment and measurement capabilities in the test cell environment. Customer expectations are therefore rising with respect to data uncertainty. Key critical test cell parameters such as load, fuel rate, air flow and emission measurements are more heavily under scrutiny and require real time methods of verification over and above the traditional test cell calibration in 40CFR1065 regulation. The objective of this paper is to develop a system to use a carbon dioxide (CO2) based balance error and an oxygen (O2) based balance error for diagnosing the main measurement system error in the test cell such as fuel rate meter, air flow meter, emission sample line, pressure transducer and thermocouples. The general combustion equation is used to set up the balance equations with assumptions. To validate the air fuel ratio balance model an experimental investigation was carried out for D2 5 mode and C1 8 mode cycle test.
Journal Article

Application of CFD to Predict Brake Disc Contamination in Wet Conditions

2016-04-05
2016-01-1619
Brake disc materials are being utilised that have low noise/dust properties, but are sensitive to contamination by surface water. This drives large dust shields, making brake cooling increasingly difficult. However, brake cooling must be delivered without compromising aerodynamic drag and hence CO2 emissions targets. Given that front brake discs sit in a region of geometric, packaging and flow complexity optimization of their performance requires the analysis of thermal, aerodynamic and multi-phase flows. Some of the difficulties inherent in this task would be alleviated if the complete analysis could be performed in the same CAE environment: utilizing common models and the same solver technology. Hence the project described in this paper has sought to develop a CFD method that predicts the amount of contamination (water) that reaches the front brake discs, using a standard commercial code already exploited for both brake disc thermal and aerodynamics analysis.
Journal Article

A Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehicle Handling Crosswind Simulation using the DrivAer Model

2016-04-05
2016-01-1601
In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.
Technical Paper

Experimental and Computational Study of Vehicle Surface Contamination on a Generic Bluff Body

2016-04-05
2016-01-1604
This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon. The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle.
Journal Article

Analytical and Developmental Techniques Utilized in the Structural Optimization of a New Lightweight Diesel Engine

2015-06-15
2015-01-2298
Jaguar Land Rover (JLR) has designed and developed a new inline 4 cylinder engine family, branded Ingenium. In addition to delivering improved emissions and fuel economy over the outgoing engine, another key aim from the outset of the program was to reduce the combustion noise. This paper details the NVH development of the lead engine in this family, a 2.0 liter common rail turbo diesel. The task from the outset of this new program was to reduce the mass of the engine by 21.5 kg, whilst also improving the structural attenuation of the engine by 5 dB in comparison to the outgoing engine. Improving the structural attenuation by 5 dB was not only a key enabler in reducing combustion noise, but also helped to achieve a certified CO2 performance of 99 g/km in the all-new Jaguar XE model, by allowing more scope for increasing cylinder pressure forcing without compromising NVH.
Journal Article

Assessment of Broadband Noise Generated by a Vehicle Sunroof at Different Flow Conditions using a Digital Wind Tunnel

2015-06-15
2015-01-2321
For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Journal Article

Base Pressure and Flow-Field Measurements on a Generic SUV Model

2015-04-14
2015-01-1546
The pressure on the base of a vehicle is a major contributor to the aerodynamic drag of all practical vehicle geometries, and for some vehicles, such as an SUV, it is particularly important because it can account for up to 50% of the overall drag. Understanding the mechanisms that influence the base pressure and developing our simulation tools to ensure that base pressure is accurately predicted are essential requirements for the vehicle design and engineering process. This paper reports an experimental study to investigate the base pressure on a specifically designed generic SUV model. The results from ¼ scale wind tunnel tests include force and moment data, surface pressures over the base region and particle image velocimetry (PIV) in the wake. Results are presented for the vehicle in different ride height, underfloor roughness and wheel configurations and the paper includes some description of the experimental errors. Some initial CFD simulations are also reported.
Technical Paper

The Effects of Unsteady Flow Conditions on Vehicle in Cabin and External Noise Generation

2015-04-14
2015-01-1555
A vehicle driving on the road experiences unsteady flow conditions which are not generally reproduced in the development environment. This paper investigates the potential importance of this difference to aeroacoustics and hence to occupant perception and proposes a methodology to enable better ranking of designs by taking account of wind noise modulation. Two approaches of reproducing the effects of unsteady wind on aeroacoustics were investigated: an active wind tunnel Turbulence Generation System (TGS) and a quasi-steady approach based on measurements at a series of fixed yaw angles. A number of tools were used to investigate the onset flow and its impacts, including roof-mounted probe, acoustic heads and surface microphones. External noise measurements help to reveal the response of separate exterior noise sources to yaw.
Journal Article

Assessing the Aeroacoustic Response of a Vehicle to Transient Flow Conditions from the Perspective of a Vehicle Occupant

2014-04-01
2014-01-0591
On-road, a vehicle experiences unsteady flow conditions due to turbulence in the natural wind, moving through the unsteady wakes of other road vehicles and travelling through the stationary wakes generated by roadside obstacles. Separated flow structures in the sideglass region of a vehicle are particularly sensitive to unsteadiness in the onset flow. These regions are also areas where strong aeroacoustic effects can exist, in a region close to the passengers of a vehicle. The resulting aeroacoustic response to unsteadiness can lead to fluctuations and modulation at frequencies that a passenger is particularly sensitive towards. Results presented by this paper combine on-road measurement campaigns using instrumented vehicles in a range of different wind environments and aeroacoustic wind tunnel tests.
Journal Article

Evaluation of Non-Uniform Upstream Flow Effects on Vehicle Aerodynamics

2014-04-01
2014-01-0614
Historically vehicle aerodynamic development has focused on testing under idealised conditions; maintaining measurement repeatability and precision in the assessment of design changes. However, the on-road environment is far from ideal: natural wind is unsteady, roadside obstacles provide additional flow disturbance, as does the presence of other vehicles. On-road measurements indicate that turbulence with amplitudes up to 10% of vehicle speed and dominant length scales spanning typical vehicle sizes (1-10 m) occurs frequently. These non-uniform flow conditions may change vehicle aerodynamic behaviour by interfering with separated turbulent flow structures and increasing local turbulence levels. Incremental improvements made to drag and lift during vehicle development may also be affected by this non-ideal flow environment. On-road measurements show that the shape of the observed turbulence spectrum can be generalised, enabling the definition of representative wind conditions.
X