Refine Your Search


Search Results

Viewing 1 to 18 of 18
Technical Paper

Multi-Plane PIV Measurements in a Gasoline Direct Injection Engine

The flows in-cylinder have a profound effect on the mixture preparation and subsequent combustion in all engines. These flows are highly three-dimensional in nature and information from multiple planes is required to characterise the flow dynamics. The flow measurements reported here are from three orthogonal planes in an optical access engine that is based on the Jaguar Land Rover AJ200 Gasoline Direct Injection (GDI) engine. Particle Image Velocimetry (PIV) measurements have been taken every 5°CA from the start of induction to the end of compression. Data have been obtained from 300 cycles for separate experiments measuring flows in the tumble plane, the swirl plane and the cross-tumble plane. Vector comparison metrics are used to quantitatively compare ensemble averaged PIV flow fields to Computational Fluid Dynamics (CFD) simulations across each plane in terms of both the velocity magnitude and direction.
Technical Paper

In the Wake of Others: Unsteady Bonnet Surface Pressure Predictions and Measurements

In use cars often drive through the wakes of other vehicles. It has long been appreciated that this imposes a fluctuating onset flow which can excite a structural response in vehicle panels, particularly the bonnet. This structure must be designed to be robust to such excitation to guarantee structural integrity and maintain customer expectations of quality. As we move towards autonomous vehicles and exploit platoons for drag reduction, this onset flow condition merits further attention. The work reported here comprises both measurements and simulation capturing the unsteady pressure distribution over the bonnet of an SUV following a similar vehicle at high speed and in relatively close proximity. Measurements were taken during track testing and include 48 static measurement locations distributed over the bonnet where the unsteady static pressures were recorded.
Journal Article

Advances in Experimental Vehicle Soiling Tests

The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Technical Paper

Parametric Study of Reduced Span Side Tapering on a Simplified Model with Wheels

Many modern vehicles have blunt rear end geometries for design aesthetics and practicality; however, such vehicles are potentially high drag. The application of tapering; typically applied to an entire edge of the base of the geometry is widely reported as a means of reducing drag, but in many cases, this is not practical on real vehicles. In this study side tapers are applied to only part of the side edge of a simplified automotive geometry, to show the effects of practical implementations of tapers. The paper reports on a parametric study undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor model equipped with wheels. The aerodynamic effect of implementing partial side edge tapers is assessed from a full height taper to a 25% taper in both an upper and lower body configuration. These were investigated using force and moment coefficients, pressure measurements and planar particle image velocimetry (PIV).
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Technical Paper

Robust Application of CBE and OBE for Engine Testing System Diagnosis

Tightening emissions regulations are driving increasing focus on both equipment and measurement capabilities in the test cell environment. Customer expectations are therefore rising with respect to data uncertainty. Key critical test cell parameters such as load, fuel rate, air flow and emission measurements are more heavily under scrutiny and require real time methods of verification over and above the traditional test cell calibration in 40CFR1065 regulation. The objective of this paper is to develop a system to use a carbon dioxide (CO2) based balance error and an oxygen (O2) based balance error for diagnosing the main measurement system error in the test cell such as fuel rate meter, air flow meter, emission sample line, pressure transducer and thermocouples. The general combustion equation is used to set up the balance equations with assumptions. To validate the air fuel ratio balance model an experimental investigation was carried out for D2 5 mode and C1 8 mode cycle test.
Technical Paper

Influence of Short Rear End Tapers on the Unsteady Base Pressure of a Simplified Ground Vehicle

Short tapered sections on the trailing edge of the roof, underside and sides of a vehicle are a common feature of the aerodynamic optimization process and are known to have a significant effect on the base pressure and thereby the vehicle drag. In this paper the effects of such high aspect ratio chamfers on the time-dependent base pressure are investigated. Short tapered surfaces, with a chord approximately equal to 4% of the overall model length, were applied to the trailing edges of a simplified passenger car model (the Windsor Body) and base pressure studied via an array of surface pressure tappings. Two sets of configurations were tested. In the first case, a chamfer was applied only to the top or bottom trailing edge. A combination of taper angles was also considered. In the second case, the chamfer was applied to the side edges of the model base, leaving the horizontal trailing edges squared.
Technical Paper

Aspects of Numerical Modelling of Flash-Boiling Fuel Sprays

Flash-boiling of sprays may occur when a superheated liquid is discharged into an ambient environment with lower pressure than its saturation pressure. Such conditions normally exist in direct-injection spark-ignition engines operating at low in-cylinder pressures and/or high fuel temperatures. The addition of novel high volatile additives/fuels may also promote flash-boiling. Fuel flashing plays a significant role in mixture formation by promoting faster breakup and higher fuel evaporation rates compared to non-flashing conditions. Therefore, fundamental understanding of the characteristics of flashing sprays is necessary for the development of more efficient mixture formation. The present computational work focuses on modelling flash-boiling of n-Pentane and iso-Octane sprays using a Lagrangian particle tracking technique.
Technical Paper

Characterisation of Spray Development from Spark-Eroded and Laser-Drilled Multi-Hole Injectors in an Optical DISI Engine and in a Quiescent Injection Chamber

This paper addresses the need for fundamental understanding of the mechanisms of fuel spray formation and mixture preparation in direct injection spark ignition (DISI) engines. Fuel injection systems for DISI engines undergo rapid developments in their design and performance, therefore, their spray breakup mechanisms in the physical conditions encountered in DISI engines over a range of operating conditions and injection strategies require continuous attention. In this context, there are sparse data in the literature on spray formation differences between conventionally drilled injectors by spark erosion and latest Laser-drilled injector nozzles. A comparison was first carried out between the holes of spark-eroded and Laser-drilled injectors of same nominal type by analysing their in-nozzle geometry and surface roughness under an electron microscope.
Technical Paper

Adding Depth: Establishing 3D Display Fundamentals for Automotive Applications

The advent of 3D displays offers Human-Machine Interface (HMI) designers and engineers new opportunities to shape the user's experience of information within the vehicle. However, the application of 3D displays to the in-vehicle environment introduces a number of new parameters that must be carefully considered in order to optimise the user experience. In addition, there is potential for 3D displays to increase driver inattention, either through diverting the driver's attention away from the road or by increasing the time taken to assimilate information. Manufacturers must therefore take great care in establishing the ‘do’s and ‘don’t's of 3D interface design for the automotive context, providing a sound basis upon which HMI designers can innovate. This paper describes the approach and findings of a three-part investigation into the use of 3D displays in the instrument cluster of a road car, the overall aim of which was to define the boundaries of the 3D HMI design space.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Journal Article

Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine

Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.
Technical Paper

Investigation on the Spray Characteristics of DMF- Isooctane Blends using PDPA

Little research has been done on spray characteristics of 2,5-dimethylfuran (DMF), since the breakthrough in its production method as an alternative fuel candidate. In this paper, the spray characteristics of pure fuels (DMF, Isooctane) and DMF-Isooctane blends under different ambient pressures (1 bar, 3 bar and 7 bar) and injection pressures (50 bar, 100 bar and 150 bar) were studied using Phase Doppler Particle Analyzer (PDPA) and high speed imaging. Droplet velocity, size distribution, spray angle and penetration of sprays were examined. Based on the results, DMF had larger SMD and penetration length than isooctane. The surface tension of fuel strongly influenced spray characteristics. Increasing the surface tension by 26 % resulted in 12 % increase in SMD. Higher ambient pressure increased the drag force, but SMD was not influenced by the increased drag force. However, the increased ambient pressure reduced the injection velocity and We number resulting in higher SMD.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Technical Paper

In-Cylinder Optical Study on Combustion of DMF and DMF Fuel Blends

The bio-fuel, 2,5 - dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. However, little is known about the flame behavior in an optical engine. In this paper, high speed imaging (with intensifier) was used during the combustion of DMF and its blends with gasoline and ethanol (D50, D85, E50D50 and E85D15) in an SI optical engine. The flame images from the combustion of each fuel were analyzed at two engine loads: 3bar and 4bar IMEP. For DMF, D50 and E50D50, two modes were compared: DI and PFI. The average flame shapes (in 2D) and the average flame speeds were calculated and combined with mass fraction burned (MFB) data. The results show that when using DMF, the rate of flame growth development and flame speed is higher than when using gasoline. The differences in flame speed between DMF and gasoline is about 10% to 14% at low IMEP.
Technical Paper

Assessment of a Vehicle's Transient Aerodynamic Response

A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. There is increasing concern about potential differences between the steady flow conditions used for development and the transient conditions that occur on the road. This paper seeks to determine if measurements made under steady state conditions can be used to predict the aerodynamic behaviour of a vehicle on road in a gusty environment. The project has included measurements in two full size wind tunnels, including using the Pininfarina TGS, steady-state and transient inlet simulations in Exa Powerflow, and a campaign of testing on-road and on-track. The particular focus of this paper is on steady wind tunnel measurements and on-road tests, representing the most established development environment and the environment experienced by the customer, respectively.
Technical Paper

Measurement of Exterior Surface Pressures and Interior Cabin Noise in Response to Vehicle Form Changes

Automotive manufactures demand early assessment of vehicle form design against wind noise attribute to eliminate any engineering waste induced by late design changes. To achieve such an assessment, it is necessary to determine a measurable quantity which is able to represent vehicle form changes, and to understand the relationship between the quantity and vehicle interior cabin noise. This paper reports experimental measurements of vehicle exterior surface pressure and the interior cabin noise level in response to the change of exterior rear view mirror shape. Measurements show that exterior surface pressure on vehicle greenhouse panel is a primary factor of wind noise load to the interior cabin noise; they can be used in preliminary wind noise ranking. Care should be taken when using them in ranking vehicle form wind noise performance. It has been observed that a change in surface pressure on the front side window does not necessarily lead to a change in the interior cabin noise.
Journal Article

The Effects of Unsteady On-Road Flow Conditions on Cabin Noise: Spectral and Geometric Dependence

The in-cabin sound pressure level response of a vehicle in yawed wind conditions can differ significantly between the smooth flow conditions of the aeroacoustic wind tunnel and the higher turbulence, transient flow conditions experienced on the road. Previous research has shown that under low turbulence conditions there is close agreement between the variation with yaw of in-cabin sound pressure level on the road and in the wind tunnel. However, under transient conditions, sound pressure levels on the road were found to show a smaller increase due to yaw than predicted by the wind tunnel, specifically near the leeward sideglass region. The research presented here investigates the links between transient flow and aeroacoustics. The effect of small geometry changes upon the aeroacoustic response of the vehicle has been investigated.