Refine Your Search

Topic

Search Results

Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Journal Article

Design Description and Initial Characterization Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

2009-07-12
2009-01-2419
NASA's proposed lunar lander, Altair, will be exposed to vastly different external temperatures following launch till its final destination on the moon. In addition, the heat rejection is lowest at the lowest environmental temperatures (0.5 kW @ 4K) and highest at the highest environmental temperature (4.5 kW @ 215K). This places a severe demand on the radiator design to handle these extreme turn-down requirements. A radiator with digital turn-down capability is currently under study at JPL as a robust means to meet the heat rejection demands and provide freeze protection while minimizing mass and power consumption. Turndown is achieved by independent control of flow branches with isolating latch valves and a gear pump to evacuate the isolated branches. A bench-top test was conducted to characterize the digital radiator concept. Testing focused on the demonstration of proper valve sequencing to achieve turn-down and recharge of flow legs.
Technical Paper

Thermal Strategy for the Phoenix Robotic Arm Deployment

2009-07-12
2009-01-2438
The Mars Scout Phoenix Lander successfully landed in the Martian northern latitude on May 25, 2008. The Robotic Arm, which was designed to dig and to transfer soil samples to other Lander instruments, contained a number of actuators that had specific operational windows on the Martian surface due to the bearing lubricant. The deployment of the Robotic Arm was planned for Sol 2 (Mars days are referred to “Sols”). A few weeks before Mars landing, the Robotic Arm operations team learned that a strict flight rule had been imposed. It specified that the deployment shall be accomplished when the actuators were at or above −25°C since the deployment activity was qualified with the actuators at −40°C. Furthermore, the deployment plan identified a window of opportunity between 13:00 Local Solar Time (LST, equivalent to dividing the Sol into 24 equal Martian hours) and 15:30 LST.
Journal Article

On-Orbit Performance of the Moon Mineralogy Mapper Instrument

2009-07-12
2009-01-2390
Launched on India's Chandrayaan-1 spacecraft on October 22, 2008, JPL's Moon Mineralogy Mapper (M3) instrument has successfully completed over six months of operation in space. M3 is one in a suite of eleven instruments, six of which are foreign payloads, flying onboard the Indian spacecraft. Chandrayaan-1, managed by the Indian Space Research Organization (ISRO) in Bangalore, is India's first deep space mission. Chandrayaan-1 was launched on the upgraded version of India's Polar Satellite Launch Vehicle (PSLV-XL) from the Satish Dhawan Space Centre, SHAR, Sriharikota, India. The primary science objective of the M3 instrument is the characterization and mapping of the lunar surface composition in the context of its geologic evolution. Its primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions.
Technical Paper

Thermal Design of the Mars Science Laboratory Powered Descent Vehicle

2008-06-29
2008-01-2001
NASA's Mars Science Laboratory mission will use a Powered Descent Vehicle to accurately and safely land a roving, robotic laboratory on the surface of Mars. The precision landing systems employed on this vehicle are exposed to a wide range of mission environments from deep space cruise to atmospheric descent and require a robust and adaptable thermal design. This paper discusses the overall thermal design philosophy of the MSL Powered Descent Vehicle and presents analysis of the active and passive elements comprising the Cruise, Entry, Descent, and Landing thermal control systems.
Technical Paper

On-Orbit Performance of the TES Loop Heat Pipe Heat Rejection System

2008-06-29
2008-01-2000
Launched on NASA's Aura spacecraft on July 15, 2004, JPL's Tropospheric Emission Spectrometer (TES) has been operating successfully for over three years in space. TES is an infrared high resolution, imaging fourier transform spectrometer with spectral coverage of 3.3 to 15.4 μm to measure and profile essentially all infrared-active molecules present in the Earth's lower atmosphere. It measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The Aura spacecraft was successfully placed in a sun-synchronous near-circular polar orbit with a mean altitude of 705 km and 98.9 minute orbit period. The observatory is designed for a nominal 5 year mission lifetime. The instrument thermal design features include four temperature zones needed for efficient cryogenic staging to provide cooling at 65 K, 180 K, 230 K and 300 K.
Technical Paper

Thermal Vacuum Testing of the Moon Mineralogy Mapper Instrument

2008-06-29
2008-01-2037
The Moon Mineralogy Mapper (M3) instrument is scheduled for launch in 2008 onboard the Indian Chandrayaan-1 spacecraft. The mission is managed by the Indian Space Research Organization (ISRO) in Bangalore, India and is India's first flight to the Moon. M3 is being developed for NASA by the Jet Propulsion Laboratory under the Discovery Program Office managed by Marshall Space Flight Center. M3 is a state-of-the-art instrument designed to fulfill science and exploratory objectives. Its primary science objective is to characterize and map the lunar surface composition to better understand its geologic evolution. M3's primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. M3 is a cryogenic near infrared imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

Thermal Vacuum Testing of the Orbiting Carbon Observatory Instrument

2008-06-29
2008-01-2036
The Orbiting Carbon Observatory (OCO) instrument is scheduled for launch onboard an Orbital Sciences Corporation LEOStar-2 architecture spacecraft in December 2008. The instrument will collect data to identify CO2 sources and sinks and quantify their seasonal variability. OCO observations will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. OCO has three bore-sighted, high resolution, grating spectrometers which share a common telescope with similar optics and electronics. A 0.765 μm channel will be used for O2 observations, while the weak and strong CO2 bands will be observed with 1.61 μm and 2.06 μm channels, respectively. The OCO spacecraft circular polar orbit will be sun-synchronous with an inclination of 98.2 degrees, mean altitude of 705 km and 98.9 minute orbit period.
Journal Article

On-Orbit Thermal Performance of the TES Instrument-Three Years in Space

2008-06-29
2008-01-2118
The Tropospheric Emission Spectrometer (TES), launched on NASA's Earth Observing System Aura spacecraft on July 15, 2004 has successfully completed over three years in space and has captured a number of important lessons. The instrument primary science objective is the investigation and quantification of global climate change. TES measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. It is an infrared (IR) high resolution, imaging Fourier Transform Spectrometer (FTS) with a 3.3 to 15.4 μm spectral coverage required for space-based measurements to profile essentially all infrared-active molecules present in the Earth's lower atmosphere. The nominal on-orbit mission lifetime is 5 years. The Aura spacecraft flies in a sun-synchronous near-circular polar orbit with 1:38 pm ascending node.
Journal Article

Ground Validation of the Third Generation JPL Electronic Nose

2008-06-29
2008-01-2044
The Third Generation ENose is an air quality monitor designed to operate in the environment of the US Lab on the International Space Station. It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 °C, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The abilities of the device to detect ten analytes, to reject confounders as “unknown” and to deconvolute mixtures of two analytes under varying environmental conditions has been tested extensively in the laboratory. Results of ground testing showed an overall success rate for detection, identification and quantification of analytes of 87% under nominal temperature and humidity conditions and 83% over all conditions.
Journal Article

Development of the Orbiting Carbon Observatory Instrument Thermal Control System

2008-06-29
2008-01-2065
The Orbiting Carbon Observatory (OCO) will carry a single science instrument scheduled for launch on an Orbital Sciences Corporation LeoStar-2 architecture spacecraft bus in December 2008. The science objective of the OCO instrument is to collect spaced-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to identify CO2 sources and sinks and quantify their seasonal variability. The instrument will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. These measurements will improve our ability to forecast CO2 induced climate change. The instrument consists of three bore-sighted, high resolution grating spectrometers sharing a common telescope with similar optics and electronics.
Journal Article

ATCC 29669 Spores Show Substantial Dry Heat Survivability

2008-06-29
2008-01-1982
Bacillus sp. ATCC 29669 was isolated from microbial fallout in clean rooms during the assembly of the Viking Spacecraft missions to Mars, making it a potential contamination concern for outbound space missions. Spores from this bacterial strain were found to be thirty times more resistant to dry heat than B. atrophaeus. Spore inactivation rates under vacuum controlled humidity were faster than rates obtained under ambient humidity. Inactivation rates for these heat resistant spores are important considerations for planetary protection implementation where temperature, time and humidity conditions are used to estimate the effectiveness of dry heat microbial reduction (DHMR) procedures.
Journal Article

Thermal Control System of the Moon Mineralogy Mapper Instrument

2008-06-29
2008-01-2119
The Moon Mineralogy Mapper (M3) instrument is one in a suite of twelve instruments which will fly onboard the Indian Chandrayaan-1 spacecraft scheduled for launch in 2008. Chandrayaan-1 is India's first mission to the Moon and is being managed by the Indian Space Research Organization (ISRO) in Bangalore, India. Chandrayaan-1 overall scientific objective is the photo-selenological and the chemical mapping of the Moon. The primary science objective of the M3 instrument is the characterization and mapping of the lunar surface composition in the context of its geologic evolution. Its primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. It is a “push-broom” near infrared (IR) imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

The Applicability of Past Innovative Concepts to the Technology for New Extremely Large Space Antenna/Telescope Structures

2006-07-17
2006-01-2063
Early development of concepts for space structures up to 1000 meters in size was initiated in the early 1960's and carried through the 1970's. The enabling technologies were self-deployables, on-orbit assembly, and on-orbit manufacturing. Because of the lack of interest due to the astronomical cost associated with advancing the on-orbit assembly and manufacturing technologies, only self-deployable concepts were subsequently pursued. However, for over 50 years, potential users of deployable antennas for radar, radiometers, planar arrays, VLBF and others, are still interested and constantly revising the requirements for larger and higher precision structures. This trend persists today. An excellent example of this trend is the current DARPA/SPO ISAT Program that applies self-deployable structures technology to a 300 meter long active planar array radar antenna. This ongoing program has created a rare opportunity for innovative advancement of state-of-the-art concepts.
Technical Paper

Self-Deployable Foam Antenna Structures for Earth Observation Radiometer Applications

2006-07-17
2006-01-2064
The overall goal of this program was the development of a 10 m. diameter, self-deployable antenna based on an open-celled rigid polyurethane foam system. Advantages of such a system relative to current inflatable or self-deploying systems include high volumetric efficiency of packing, high restoring force, low (or no) outgassing, low thermal conductivity, high dynamic damping, mechanical isotropy, infinite shelf life, and easy fabrication with methods amenable to construction of large structures (i.e., spraying). As part of a NASA Phase II SBIR, Adherent Technologies and its research partners, Temeku Technologies, and NASA JPL/Caltech, conducted activities in foam formulation, interdisciplinary analysis, and RF testing to assess the viability of using open cell polyurethane foams for self-deploying antenna applications.
Technical Paper

Q-PCR Based Bioburden Assessment of Drinking Water Throughout Treatment and Delivery to the International Space Station

2005-07-11
2005-01-2932
Previous studies indicated evidence of opportunistic pathogens in samples obtained during missions to the International Space Station (ISS). This study utilized TaqMan quantitative PCR to determine specific gene abundance in potable and non-potable ISS waters. Probe and primer sets specific to the small subunit rRNA genes were designed and used to elucidate overall bacterial rRNA gene numbers. In addition, primer-probe sets specific for Burkholderia cepacia and Stenotrophomonas maltophilia were optimized and genes of these two opportunistic pathogens quantified in the pre- and post-flight drinking water as well as coolant waters. This Q-PCR approach supports findings of previous culture-based studies however; the culture based studies may have underestimated the microbial burden of ISS drinking water.
Technical Paper

High Temperature Mechanically Pumped Fluid Loop for Space Applications –Working Fluid Selection

2004-07-19
2004-01-2415
Mechanically pumped single-phase fluid loops are well suited for transporting and rejecting large amounts of waste heat from spacecraft electronics and power supplies. While past implementations of such loops on spacecraft have used moderate operating temperatures (less than 60ºC), higher operating temperatures would allow equivalent heat loads to be rejected by smaller and less massive radiators. A high temperature (100 to 150ºC) mechanically pumped fluid loop is currently being investigated at the Jet Propulsion Laboratory (JPL) for use on future Mars missions. This paper details the trade study used to select the high temperature working fluid for the system and the initial development testing of loop components.
Technical Paper

Mars Exploration Rover Heat Rejection System Performance – Comparison of Ground and Flight Data

2004-07-19
2004-01-2413
Mars Exploration Rover (MER) mission launched two spacecraft to Mars in June and July of 2003 and landed two rovers on Mars in January 2004. A Heat Rejection System (HRS) based on a mechanically pumped single-phase liquid cooling system was used to reject heat from electronics to space during the seven months cruise from Earth to Mars. Even though most of this HRS design was similar to the system used on Mars Pathfinder in 1996, several key modifications were made in the MER HRS design. These included the heat exchanger used in removing the heat from electronics, design of venting system used to vent the liquid prior to Mars entry, inclusion of pressure transducer in the HRS, and the spacecraft radiator design. Extensive thermal/fluids modeling and analysis were performed on the MER HRS design to verify the performance and reliability of the system. The HRS design and performance was verified during the spacecraft system thermal vacuum tests.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

2003-07-07
2003-01-2688
A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
Technical Paper

Design and Flight Qualification of a Paraffin-Actuated Heat Switch for Mars Surface Applications

2002-07-15
2002-01-2275
The Mars Exploration Rover (MER) flight system uses mechanical, paraffin-actuated heat switches as part of its secondary battery thermal control system. This paper describes the design, flight qualification, and performance of the heat switch. Although based on previous designs by Starsys Research Corporation1,2, the MER mission requirements have necessitated new design features and an extensive qualification program. The design utilizes the work created by the expansion of a paraffin wax by bringing into contact two aluminum surfaces, thereby forming a heat conduction path. As the paraffin freezes and contracts, compression springs separate the surfaces to remove the conduction path. The flight qualification program involved extensive thermal performance, structural, and life testing.
X