Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Comparative Analysis of Combustion Process, Performance and Exhaust Emissions in Diesel Engine Fueled with Blends of Jatropha Oil-Diesel Fuel and Jatropha Oil-Kerosene

A comparative study was performed by use of blends of Jatropha oil-diesel fuel and Jatropha oil-kerosene in order to investigate the feasibility of direct utilization of Jatropha oil in a DI diesel engine. Experimental results at low load demonstrated that mixing 60 vol.% of Jatropha oil into both diesel fuel and kerosene gave less impact on indicated thermal efficiency, whereas further increase of Jatropha oil deteriorated it. Jatropha oil-kerosene decreased particulate matter compared to Jatropha oil-diesel fuel, although particulate matter increased with the increase of Jatropha oil fraction. At partial load where double injection was applied, mixing 80 vol.% of Jatropha oil gave no significant impact on indicated thermal efficiency, exhaust gas emissions and particulate matter and no significant difference was observed between diesel fuel blends and kerosene blends.
Technical Paper

Premixed Fuel Effect on Ignition and Combustion of Dual Fuel Compression Ignition Engine

Effects of chemical reaction characteristics of premixed fuel were experimentally studied in a dual fuel compression ignition engine using port injection (PI) of gasoline-like component and direct injection (DI) of diesel fuel. Octane number of port injection fuels, direct injection timing and injection amount ratio between PI and DI were swept to assess the interaction between chemical reaction and mixture distribution in a combustion chamber. Chemical kinetic study using multi-zone modeling was also performed in order to explain experimental results under quiescent condition.
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Technical Paper

Effects of Mixedness and Ignition Timings on PCCI Combustion with a Dual Fuel Operation

A dual fuel operation with different reactivity fuels has the possibility of optimizing performance and emissions in premixed charge compression ignition engines by controlling the spatial concentration and distribution of both fuels. In the present study, n-heptane and i-octane were independently injected through two different injectors. In-cylinder pressure analysis and emissions measurement were performed in a compression ignition engine. Injection timings, fuel quantity ratio between the injections were changed for the two cases, in which one fuel was injected using a port fuel injection system while the other was directly injected into the cylinder, in order to drastically vary mixture distributions and ignition timings. In addition, an optical diagnostic was performed in a rapid compression and expansion machine to develop an understanding of the ignition processes of the two mixtures.
Technical Paper

Study on Impinging Diffusion DI Diesel Engine - Numerical Study on Effect of Impinging Part on In-Cylinder Flow -

The effects of the spray impinging part on the in-cylinder airflow were numerically analyzed in the combustion chamber of the impinging diffusion direct injection diesel engine using KIVA-3 code. KIVA-3 code was enhanced to cater the impinging part as an internal obstacle by adopting the virtual droplet method, which is relatively easy to implement. Numerical result shows that the turbulence generation is promoted by the impinging part and is transformed by the squish flow into the piston cavity. The secondary flow is generated beneath the impinging part as well. The secondary flow area increases as the distance between top surface of the impinging part and bottom surface of the cylinder cover increases.
Technical Paper

Development of a direct-injection diesel engine with mixture formation by fuel spray impingement

The mixture formation by fuel spray impingement (OSKA system) was applied to a small direct-injection diesel engine in order to reduce the wall quenching- induced emissions, i.e., the emissions of THC and soluble organic fractions (SOF). Experiments were carried out using a single-cylinder engine, fitted with various piston cavity geometries, ran under a wide range of compression ratios and fuel injection specifications. The piston cavity was designed as a centrally located reentrant type. The combination of the high squish flow and the weak penetration of the OSKA spray was very effective in reducing harmful emissions. A short ignition delay, under the retarded fuel injection timing, was obtained because of the high compression ratio. The OSKA DI diesel engine showed reduced NOx, smoke, and THC emissions without deterioration of the fuel consumption compared to modern DI diesel engines used in automotive applications.
Technical Paper

Investigation of Particulate Formation of DI Diesel Engine with Direct Sampling from Combustion Chamber

This paper is concerned with the formation of Particulate Matter (PM) in direct-injection (DI) diesel engines. A system featuring an electromagnetically actuated sampling valve was used for sampling of gas directly from the combustion chamber. The concentrations of total particulate matter (TPM) and of its two components, the Soluble Organic Fractions (SOF) and the Insoluble Fractions (ISF), were determined at different locations in the combustion chamber at different sampling times (different crank angles). High concentrations of SOF were found at sampling positions along the spray flame axis. The concentrations of SOF and ISF were higher at sampling positions close to the wall than away from the wall. The results suggest that SOF formation is significantly affected by wall quenching. Also, the PM concentrations were much higher in the combustion chamber than in the exhaust.
Technical Paper

Combustion Observation of OSKA-DH Diesel Engine by High-Speed Photography and Video System

The OSKA-DH diesel engine employed a unique system (hereafter called OSKA system) which is composed of a single-hole fuel injector, an impinging disk and a re-entrant type combustion chamber. This study is concerned with the combustion observation of both OSKA-DH diesel engine and conventional DI diesel engine by the high-speed photography and video system. This video system enables us to take combustion photographs under the warm-up condition of the engine. From the observation of those photographs, the OSKA-DH engine shows the shorter ignition delay compared with a DI diesel engine and the combustion flame of OSKA-DH diesel engine are concentrated in the center of the combustion chamber and a relatively monotonous flame intensity are observed. THE AUTHORS HAVE DEVELOPED a new type of Direct Injection Stratified Charge Engine called “Direct Fuel Injection Impingement Diffusion Stratified Charge System” (hereafter called OSKA System).
Technical Paper

Development of OSKA-DH Diesel Engine Using Fuel Jet Impingement and Diffusion Investigation of Mixture Formation and Combustion

This study is concerned with development of a new type of diesel engine using the fuel jet impingement (OSKA-DH). Simultaneous reduction of the NOx and smoke emission were demonstrated with single cylinder prototype OSKA-DH engine. As a fundamental study on the mixture formation process, the observation of impinged fuel spray was studied by using a pressurized constant volume vessel. The high-speed combustion photographs of both re-entrant and open type combustion chamber were also taken by using the experimental transparent engine. From the observation of pressurized vessel and high-speed combustion photographs, the mixture formation and combustion was strongly affected by the squish flow velocity. The short ignition delay and faster combustion were observed by the re-entrant type combustion chamber because of high squish speed.
Technical Paper

Development of Low NOx Emission Diesel Engine by Impingment of Fuel Jet

This study is concerned with development of a new type of Diesel engine by impingement of fuel jet. The impinging part is installed on the cylinder head (OSKA-DH), against which the fuel jet is injected to spread and form fuel-air mixture. As a fundamental study on the mixture formation process, the observation of the impinged fuel jet was studied by using a pressurized vessel. High-speed combustion photographs of the OSKA and DI Diesel engine were also taken by using the experimental transparent engine. A single cylinder 4 stroke cycle prototype OSKA-DH engine (ø 118 x 108 mm) was developed. Pintle type single hole fuel injector is used and relatively low opening pressure of 15.3 MPa is employed. The re-entrant type combustion chamber and relatively high compression ratio of 20.4: 1 are employed. Experiments with a single cylinder proto-type engine showed that the lower NOx and smoke emissions compared with the conventional DI diesel engine.