Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Model-Based Combustion Control of a HCCI Engine using External EGR and the Exhaust Rebreathed

2014-11-11
2014-32-0079
To approach realization of Homogeneous Charge Compression Ignition (HCCI) combustion without external combustion ignition trigger, it is necessary to construct HCCI engine control system. In this study, HCCI research engine equipped with the EGR passage for external EGR and the two-stage exhaust cam for exhaust rebreathed. This system can control the mixing ratio of four gases (air, fuel, rebreathed EGR gas, external EGR gas) of in-cylinder by operating four throttles and fuel injection duration while maintaining acceptable pressure rise rate (PRR) and cycle-to-cycle variation of Indicated Mean Effective Pressure (IMEP), closed-loop control system designed by applying feedback variables (equivalence ratio, combustion-phasing, IMEP) for feedback control. Those control inputs (four throttles and fuel injection) has correlation mutually, control inputs cause interference, response become low and hunching occurs.
Technical Paper

An Investigation of Controlling Two-Peak Heat Release Rate for Combustion Noise Reduction in Split-Injection PCCI Engine using Numerical Calculation

2014-11-11
2014-32-0132
A combustion method called Noise Canceling Spike (NC-Spike) Combustion [1, 2] has been reported in the co-author's previous paper, which reduces combustion noise in PCCI with split injection. This NC-Spike Combustion uses interference of the following “spike” of pressure rise on the preceding peak of pressure rise. The overall combustion noise is reduced by lowering the maximum frequency component of the noise spectrum. The period of this frequency is two times of the time interval between the two peaks of the pressure rise rate. This maximum load range of conventional PCCI combustion is limited by the combustion noise, since the maximum pressure rise rate increases as the amount of injected fuel increases. The NC-Spike Combustion has a potential to extend of the operating range of PCCI combustion.
Journal Article

A Computational Study of the Effects of EGR and Intake-Pressure Boost on DME Autoignition Characteristics over Wide Ranges of Engine Speed

2014-04-01
2014-01-1461
This study has been computationally investigated how the DME autoignition reactivity is affected by EGR and intake-pressure boost over various engine speed. CHEMKIN-PRO was used as a solver and chemical-kinetics mechanism for DME was utilized from Curran's model. We examined first the influence of EGR addition on autoignition reactivity using contribution matrix. Investigations concentrate on the HCCI combustion of DME at wide ranges of engine speeds and intake-pressure boost with EGR rates and their effects on variations of autoignition timings, combustion durations in two-stage combustion process in-detail including reaction rates of dominant reactions involved in autoignition process. The results show that EGR addition increases the combustion duration by lowering reaction rates.
X