Refine Your Search

Topic

Author

Search Results

Technical Paper

Influence of the Injector Geometry at 250 MPa Injection in a Light-Duty Diesel Engine

2017-03-28
2017-01-0693
This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.
Technical Paper

Experimental Characterization of DI Gasoline Injection Processes

2015-09-01
2015-01-1894
This work investigates the injection processes of an eight-hole direct-injection gasoline injector from the Engine Combustion Network (ECN) effort on gasoline sprays (Spray G). Experiments are performed at identical operating conditions by multiple institutions using standardized procedures to provide high-quality target datasets for CFD spray modeling improvement. The initial conditions set by the ECN gasoline spray community (Spray G: Ambient temperature: 573 K, ambient density: 3.5 kg/m3 (∼6 bar), fuel: iso-octane, and injection pressure: 200 bar) are examined along with additional conditions to extend the dataset covering a broader operating range. Two institutes evaluated the liquid and vapor penetration characteristics of a particular 8-hole, 80° full-angle, Spray G injector (injector #28) using Mie scattering (liquid) and schlieren (vapor).
Technical Paper

Effects of Hydrogen Ratio and EGR on Combustion and Emissions in a Hydrogen/Diesel Dual-Fuel PCCI Engine

2015-09-01
2015-01-1815
The effects of hydrogen ratio and exhaust gas recirculation (EGR) on combustion and emissions in a hydrogen/diesel dual-fuel premixed charge compression ignition (PCCI) engine were investigated. The control of combustion phasing could be improved using hydrogen enrichment and EGR due to the retarded combustion phasing with a higher hydrogen ratio. The indicated mean effective pressure (IMEP) was increased with a higher hydrogen ratio because the hydrogen enrichment intensified the high temperature reactions and thus decreased the combustion duration. Hydrocarbon (HC) and carbon monoxide (CO) emissions were reduced significantly in a hydrogen/diesel dual-fuel PCCI mode with a similar NOx emissions level as that of the diesel PCCI mode.
Technical Paper

Assessment of the Ignition and Lift-off Characteristics of a Diesel Spray with a Transient Spreading Angle

2015-09-01
2015-01-1828
Multi-hole diesel fuel injectors have shown significant transients in spreading angle during injections, different than past fundamental research using single-hole injectors. We investigated the effect of a this transient spreading angle on combustion parameters such as ignition delay and lift-off length by comparing a three-hole nozzle (Spray B) and single-hole nozzle (Spray A) with holes of the same size and shape as targets for the Engine Combustion Network (ECN). With the temperature distribution for a target plume of Spray B characterized extensively in a constant-volume combustion chamber, the ignition delay and lift-off length were measured and compared. Results show that the lift-off length of Spray B increases and grows by approximately 1.5 mm after the initial stages of ignition, in an opposite trend compared to Spray A where the lift-off length decreases with time.
Technical Paper

Effects of High-Response TiAl Turbine Wheel on Engine Performance under Transient Conditions

2015-09-01
2015-01-1881
Transient tests in a 2.0 liter in-line 4 cylinder downsizing gasoline direct injection engine were conducted under various transient conditions in order to investigate effects of lower rotational inertia of titanium aluminide alloy (TiAl) turbine wheel on engine and turbocharger performances. As a representative result, fast boost pressure build up was achieved in case of TiAl turbocharger compared to Inconel turbocharger. This result was mainly due to lower rotational inertia of TiAl turbine wheel. Engine torque build up response was also improved with TiAl turbocharger even though engine torque response gap between both turbochargers was slightly reduced due to retarded combustion phase. In addition, with advanced ignition timing, fuel consumption became less than that of Inconel turbocharger with similar engine torque response.
Technical Paper

GDi Skew-Angled Nozzle Flow and Near-Field Spray Analysis using Optical and X-Ray Imaging and VOF-LES Computational Fluid Dynamics

2013-04-08
2013-01-0255
Improvement of spray atomization and penetration characteristics of the gasoline direct-injection (GDi ) multi-hole injector is a critical component of the GDi combustion developments, especially in the context of engine down-sizing and turbo-charging trend that is adopted in order to achieve the European target CO₂, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards optimization of the nozzle designs, in order to improve the GDi multi-hole spray characteristics. This publication reports VOF-LES analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries. The objective is to extend previous works to include the effect of nozzle-hole skew angle on the nozzle flow and spray primary breakup. VOF-LES simulations of a single nozzle-hole of a purpose-designed GDi multi-hole seat geometry, with three identical nozzle-holes per 120° seat segment, are performed.
Technical Paper

Brushless Motors for In-Tank Fuel Pumps

2012-04-16
2012-01-0426
Traditional in-tank gasoline and diesel fuel pumps require high power, 120 W or more, in fuel systems that have high flow requirements, high pressure requirements, or both. One method to reduce power consumption is to improve efficiency by using a brushless motor rather than the traditional brush style motor. The brushless motor technology also eliminates the brush to commutator interface which improves the pump's robustness to fuel and reduces flow variation. Additional benefits are provided by the controller which provides motor commutation since it enables closed loop pump speed control, pump diagnostics, and the opportunity for additional sensor interfaces to improve the fuel delivery system architecture. This paper describes the brushless motor technology, design optimization strategy for fuel pump applications, selected design, and resulting torque and efficiency performance improvements.
Technical Paper

Development of a Parallel-Type Diesel Hybrid Bus and Fuel Efficiency Results from Trial Runs

2011-10-06
2011-28-0065
High-powered vehicles offer an advantage of superior fuel economy through use of regenerative braking and lowered transient emissions by reducing the operating portion of the engine to follow load as closely as in a conventional bus. A hybrid bus was designed and a prototype was developed. It has a parallel-type hybrid powertrain system and uses a 6-liter diesel engine which satisfy Euro-5 emission standard. 44-kW-electric motor, AMT (automated manual transmission) and Li-ion-type batteries were applied to this hybrid bus. Total 8 hybrid buses are test-running in 6 cities and the driving performances are monitored in terms of fuel efficiency, emission and convenience. This paper presents the performance, major component features and calibration procedures of hybrid powertrain systems. Test run monitoring result showed a benefit of fuel economy at least 36% by comparing to a conventional diesel-powered bus.
Technical Paper

Clutchless Geared Smart Transmission

2011-08-30
2011-01-2031
Most passenger vehicles employ manual or automatic transmission in their power train. Recently, some automated geared transmission including the dual clutch transmission is gaining popularity for its fuel efficiency and smooth driving as well as convenience. In this study, we are proposing a new much simplified clutchless geared transmission which may transmit most powerful torque employing the power-merge planetary gear system to the final drive during gear shift with excellent smoothness in the transmitted torque. This transmission might work for the most kinds of vehicles having internal combustion engine including the hybrid vehicles.
Technical Paper

Effects of EGR and DME Injection Strategy in Hydrogen-DME Compression Ignition Engine

2011-08-30
2011-01-1790
The compression ignition combustion fuelled with hydrogen and dimethyl-ether was investigated. Exhaust gas recirculation was applied to reduce noise and nitrogen oxide (NOx) emission. When dimethyl-ether was injected earlier, combustion showed two-stage ignitions known as low temperature reaction and high temperature reaction. With advanced dimethyl-ether injection, combustion temperature and in-cylinder pressure rise were lowered which resulted in high carbon monoxide and hydrocarbon emissions. However, NOx emission was decreased due to relatively low combustion temperature. The engine combustion showed only high temperature reaction when dimethyl-ether was injected near top dead center. When exhaust gas recirculation gas was added, the in-cylinder pressure and heat release rate were decreased. However, it retarded combustion phase resulting in higher indicated mean effective pressure.
Technical Paper

Effects of HPL and LPL EGR Gas Mixed Supply on Combustion and Emissions in Automotive Diesel Engine

2011-08-30
2011-01-1831
This paper has investigated the effects of High Pressure Loop (HPL) and Low Pressure Loop (LPL) Exhaust Gas Recirculation (EGR) gas mixture on combustion and emissions characteristics in a light-duty automotive diesel engine. This mixed supply strategy of dual-loop EGR is expected to be efficient for the reduction of NOxand smoke without the loss of turbocharger power. The results from the combined HPL and LPL EGR system were compared with those from only HPL EGR and only LPL EGR system respectively. Characteristics including temperature and mass flow rates of intake charge, air excess ratio, O₂ concentration in intake charge, difference in pressure between intake and exhaust, pumping loss, fuel consumption, CO, HC, NOx emissions, and smoke opacity were compared and analyzed at two operating conditions. Fuel consumption, NOx emission, and smoke were reduced with dual EGR mixture.
Technical Paper

Engine Efficiency Improvements Enabled by Ethanol Fuel Blends in a GDi VVA Flex Fuel Engine

2011-04-12
2011-01-0900
Advances in engine technology including Gasoline Direct injection (GDi), Dual Independent Cam Phasing (DICP), advanced valvetrain and boosting have allowed the simultaneous reductions of fuel consumption and emissions with increased engine power density. The utilization of fuels containing ethanol provides additional improvements in power density and potential for lower emissions due to the high octane rating and evaporative cooling of ethanol in the fuel. In this paper results are presented from a flexible fuel engine capable of operating with blends from E0-E85. The increased geometric compression ratio, (from 9.2 to 11.85) can be reduced to a lower effective compression ratio using advanced valvetrain operating on an Early Intake Valve Closing (EIVC) or Late Intake Valve Closing (LIVC) strategy. DICP with a high authority intake phaser is used to enable compression ratio management.
Technical Paper

High Frequency Ignition System for Gasoline Direct Injection Engines

2011-04-12
2011-01-1223
A high-frequency electrical resonance-based ignition concept is in development to replace conventional spark ignition functionality for gasoline engines employing various types of fuel injection methods. The concept provides the benefit of a continuous discharge phase and the electrical power of the discharge can also be adjusted to the needs of the combustion conditions. This concept employs an alternative method of generating high voltages, using inductors and capacitors trimmed such that the supplied energy steadily increases the output voltage. This configuration is widely known as Tesla transformer and has been engineered to operate in a modern gasoline engine combustion environment. This development allows very high break down voltages to be generated and the power into the spark itself can be influenced.
Technical Paper

Charge Motion Benefits of Valve Deactivation to Reduce Fuel Consumption and Emissions in a GDi, VVA Engine

2011-04-12
2011-01-1221
Requirements for reduced fuel consumption with simultaneous reductions in regulated emissions require more efficient operation of Spark Ignited (SI) engines. An advanced valvetrain coupled with Gasoline Direct injection (GDi) provide an opportunity to simultaneously reduce fuel consumption and emissions. Work on a flex fuel GDi engine has identified significant potential to reduce throttling by using Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) strategies to control knock and load. High loads were problematic when operating on gasoline for particulate emissions, and low loads were not able to fully minimize throttling due to poor charge motion for the EIVC strategy. The use of valve deactivation was successful at reducing high load particulate emissions without a significant airflow penalty below 3000 RPM. Valve deactivation did increase the knocking tendency for knock limited fuels, due to increased heat transfer that increased charge temperature.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Journal Article

A Simulation Method to Guide DISI Engine Redesign for Increased Efficiency using Alcohol Fuel Blends

2010-04-12
2010-01-1203
A turbocharged 2.0L 4-cylinder direct injection spark ignition (DISI) engine designed for use with gasoline is simulated using one dimensional engine simulation. Engine design modifications - increased compression ratio, 2-step valve train with dual independent cam phasing and fuel injection timing - are considered in an effort to improve fuel economy with gasoline and take advantage of properties of ethanol fuel blends (up to E85). This paper discusses a methodology to use the simulation to quantitatively evaluate the design modification effects on fuel economy. Fuel consumption predictions from the simulation for each design are evaluated. The goal is to identify the best design with the constraints of hardware physical limitations, engine residual tolerance and knock tolerance. The result yields a specification for a 2-step valve train design and phasing requirements that can improve fuel economy for each compression ratio design.
Journal Article

3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Low CO2 and NOx Emissions

2010-04-12
2010-01-0590
Today turbo-diesel powertrains offering low fuel consumption and good low-end torque comprise a significant fraction of the light-duty vehicle market in Europe. Global CO₂ regulation and customer fuel prices are expected to continue providing pressure for powertrain fuel efficiency. However, regulated emissions for NO and particulate matter have the potential to further expand the incremental cost of diesel powertrain applications. Vehicle segments with the most cost sensitivity like compacts under 1400 kg weight look for alternatives to meet the CO₂ challenge but maintain an attractive customer offering. In this paper the concepts of downsizing and downspeeding gasoline engines are explored while meeting performance needs through increased BMEP to maintain good driveability and vehicle launch dynamics. A critical enabler for the solution is adoption of gasoline direct injection (GDi) fuel systems.
Technical Paper

Investigation of Knock Limited Compression Ratio of Ethanol Gasoline Blends

2010-04-12
2010-01-0619
Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock-limited compression ratio of ethanol-gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single-cylinder direct-injection spark-ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT and other high-load conditions to determine the knock-limited compression ratio (CR) of ethanol fuel blends. The geometric CR is varied by changing pistons, producing CR from 9.2 to 12.87.
Technical Paper

Application of a General Planar Kinematics and Multi-Body Dynamics Simulation Tool to the Analysis of Variable Valve Actuation Systems

2010-04-12
2010-01-1193
The advantages of Variable Valve Actuation (VVA) in the aspects of improved engine performance, fuel economy and reduced emissions are well known in the industry. However, the design and optimization of such systems is complex and costly. The design process of VVA mechanisms can be greatly accelerated through the use of sophisticated simulation tools. Predictive numerical analysis of systems to address design issues and evaluate design changes can assure the required performance and durability. One notable requirement for the analysis and design of novel mechanically-actuated VVA systems is a general-purpose fast and easy-to-use planar mechanism kinematics analyzer with cam solution/design features, which can be applied to general mechanisms.
Technical Paper

Development of Injector for the Direct Injection Homogeneous Market using Design for Six Sigma

2010-04-12
2010-01-0594
Gasoline direct injection (GDi) engines have become popular due to their inherent potential for reduction of exhaust emissions and fuel consumption to meet increasingly stringent environmental standards. These engines require high-pressure fuel injection in order to improve the fuel atomization process and accelerate mixture preparation. The injector is a critical part of this system. The injector technology needed to satisfy the market demands is constantly changing. This paper focuses on how the Design for Six Sigma innovation methodology was successfully used to develop a new injector for the homogeneous direct injection market. The project begins with the work to understand the market needs and market drivers then decomposes those needs into functional requirements and concepts. The concepts are evaluated and the best concept is selected. The project ends with the optimization of the critical functions including fuel flow control and fuel spray control.
X